Lumen segmentation in magnetic resonance images of the carotid artery

Bibliographic Details
Main Author: Danilo Samuel Jodas
Publication Date: 2016
Other Authors: Aledir Silveira Pereira, João Manuel R. S. Tavares
Format: Article
Language: eng
Source: Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
Download full: https://hdl.handle.net/10216/86088
Summary: Investigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise.
id RCAP_cf418c7e06d3a83247ef9f4e33ad8bf9
oai_identifier_str oai:repositorio-aberto.up.pt:10216/86088
network_acronym_str RCAP
network_name_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository_id_str https://opendoar.ac.uk/repository/7160
spelling Lumen segmentation in magnetic resonance images of the carotid arteryCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesInvestigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise.2016-122016-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/86088eng0010-482510.1016/j.compbiomed.2016.10.021Danilo Samuel JodasAledir Silveira PereiraJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T18:49:01Zoai:repositorio-aberto.up.pt:10216/86088Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:59:39.232619Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse
dc.title.none.fl_str_mv Lumen segmentation in magnetic resonance images of the carotid artery
title Lumen segmentation in magnetic resonance images of the carotid artery
spellingShingle Lumen segmentation in magnetic resonance images of the carotid artery
Danilo Samuel Jodas
Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
title_short Lumen segmentation in magnetic resonance images of the carotid artery
title_full Lumen segmentation in magnetic resonance images of the carotid artery
title_fullStr Lumen segmentation in magnetic resonance images of the carotid artery
title_full_unstemmed Lumen segmentation in magnetic resonance images of the carotid artery
title_sort Lumen segmentation in magnetic resonance images of the carotid artery
author Danilo Samuel Jodas
author_facet Danilo Samuel Jodas
Aledir Silveira Pereira
João Manuel R. S. Tavares
author_role author
author2 Aledir Silveira Pereira
João Manuel R. S. Tavares
author2_role author
author
dc.contributor.author.fl_str_mv Danilo Samuel Jodas
Aledir Silveira Pereira
João Manuel R. S. Tavares
dc.subject.por.fl_str_mv Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
topic Ciências Tecnológicas, Ciências médicas e da saúde
Technological sciences, Medical and Health sciences
description Investigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
2016-12-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/86088
url https://hdl.handle.net/10216/86088
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0010-4825
10.1016/j.compbiomed.2016.10.021
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv image/png
application/pdf
dc.source.none.fl_str_mv reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron:RCAAP
instname_str FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
instacron_str RCAAP
institution RCAAP
reponame_str Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
collection Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)
repository.name.fl_str_mv Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia
repository.mail.fl_str_mv info@rcaap.pt
_version_ 1833599963506933760