Lumen segmentation in magnetic resonance images of the carotid artery
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
Download full: | https://hdl.handle.net/10216/86088 |
Summary: | Investigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise. |
id |
RCAP_cf418c7e06d3a83247ef9f4e33ad8bf9 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/86088 |
network_acronym_str |
RCAP |
network_name_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository_id_str |
https://opendoar.ac.uk/repository/7160 |
spelling |
Lumen segmentation in magnetic resonance images of the carotid arteryCiências Tecnológicas, Ciências médicas e da saúdeTechnological sciences, Medical and Health sciencesInvestigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise.2016-122016-12-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleimage/pngapplication/pdfhttps://hdl.handle.net/10216/86088eng0010-482510.1016/j.compbiomed.2016.10.021Danilo Samuel JodasAledir Silveira PereiraJoão Manuel R. S. Tavaresinfo:eu-repo/semantics/openAccessreponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP)instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiainstacron:RCAAP2025-02-27T18:49:01Zoai:repositorio-aberto.up.pt:10216/86088Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireinfo@rcaap.ptopendoar:https://opendoar.ac.uk/repository/71602025-05-28T22:59:39.232619Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologiafalse |
dc.title.none.fl_str_mv |
Lumen segmentation in magnetic resonance images of the carotid artery |
title |
Lumen segmentation in magnetic resonance images of the carotid artery |
spellingShingle |
Lumen segmentation in magnetic resonance images of the carotid artery Danilo Samuel Jodas Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
title_short |
Lumen segmentation in magnetic resonance images of the carotid artery |
title_full |
Lumen segmentation in magnetic resonance images of the carotid artery |
title_fullStr |
Lumen segmentation in magnetic resonance images of the carotid artery |
title_full_unstemmed |
Lumen segmentation in magnetic resonance images of the carotid artery |
title_sort |
Lumen segmentation in magnetic resonance images of the carotid artery |
author |
Danilo Samuel Jodas |
author_facet |
Danilo Samuel Jodas Aledir Silveira Pereira João Manuel R. S. Tavares |
author_role |
author |
author2 |
Aledir Silveira Pereira João Manuel R. S. Tavares |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Danilo Samuel Jodas Aledir Silveira Pereira João Manuel R. S. Tavares |
dc.subject.por.fl_str_mv |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
topic |
Ciências Tecnológicas, Ciências médicas e da saúde Technological sciences, Medical and Health sciences |
description |
Investigation of the carotid artery plays an important role in the diagnosis of cerebrovascular events. Segmentation of the lumen and vessel wall in Magnetic Resonance (MR) images is the first step towards evaluating any possible cardiovascular diseases like atherosclerosis. However, the automatic segmentation of the lumen is still a challenge due to the low quality of the images and the presence of other elements such as stenosis and malformations that compromise the accuracy of the results. In this article, a method to identify the location of the lumen without user interaction is presented. The proposed method uses the modified mean roundness to calculate the circularity index of the regions identified by the K-means algorithm and return the one with the maximum value, i.e. the potential lumen region. Then, an active contour is employed to refine the boundary of this region. The method achieved an average Dice coefficient of 0.78 +/- 0.14 and 0.61 +/- 0.21 in 181 3D-T1-weighted and 181 proton density-weighted MR images, respectively. The results show that this method is promising for the correct identification and location of the lumen even in images corrupted by noise. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 2016-12-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/86088 |
url |
https://hdl.handle.net/10216/86088 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0010-4825 10.1016/j.compbiomed.2016.10.021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
image/png application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) instname:FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia instacron:RCAAP |
instname_str |
FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
collection |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) |
repository.name.fl_str_mv |
Repositórios Científicos de Acesso Aberto de Portugal (RCAAP) - FCCN, serviços digitais da FCT – Fundação para a Ciência e a Tecnologia |
repository.mail.fl_str_mv |
info@rcaap.pt |
_version_ |
1833599963506933760 |