High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering

Detalhes bibliográficos
Autor(a) principal: Martins, Nicolas F. [UNESP]
Data de Publicação: 2025
Outros Autores: Laranjeira, José A. [UNESP], Denis, Pablo A., Sambrano, Julio R. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.apsusc.2024.161280
https://hdl.handle.net/11449/302471
Resumo: Volatile organic compounds (VOCs) emissions have been a recurring problem that has challenged research centers to find new ways to monitor them. From this perspective, this work investigates nitrobenzene sensing through computational simulations, a well-known toxic compound, using the strained and strain-free two-dimensional (2D) ZnO monolayer, a traditional metal oxide semiconductor (MOS). The results indicate that nitrobenzene is adsorbed via strong physisorption on the 2D ZnO and maintains interaction with the sensor under thermal stimulus (500 K), as demonstrated via ab initio molecular dynamics (AIMD) simulations. The nitrobenzene also changes the ZnO band gap energy from 4.59 to 1.85 eV and shifts 0.35 eV the work function value. Under biaxial strain, the nitrobenzene becomes chemisorbed on the ZnO monolayer. Also, remarkable conductivity changes are observed with the nitrobenzene adsorption on the strained ZnO. Excellent values of sensitivity are found, 2.29 × 1023, 8.11 × 1022 and 2.80 × 1016 for strain-free ZnO and the maximum compressed and stretched ZnO monolayer, respectively. Short recovery times of 1.16 × 10−4 s (T = 300 K) and 6.89 × 10−8 s (T = 500 K) are also found for strain-free ZnO monolayer, indicating a great reusability for nitrobenzene. Consequently, the ZnO monolayer can be used to detect nitrobenzene.
id UNSP_e6da2083d9a8a10af90ed2e2765b6c8c
oai_identifier_str oai:repositorio.unesp.br:11449/302471
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering2D materialsGas sensorNitrobenzeneStrain engineeringZnOVolatile organic compounds (VOCs) emissions have been a recurring problem that has challenged research centers to find new ways to monitor them. From this perspective, this work investigates nitrobenzene sensing through computational simulations, a well-known toxic compound, using the strained and strain-free two-dimensional (2D) ZnO monolayer, a traditional metal oxide semiconductor (MOS). The results indicate that nitrobenzene is adsorbed via strong physisorption on the 2D ZnO and maintains interaction with the sensor under thermal stimulus (500 K), as demonstrated via ab initio molecular dynamics (AIMD) simulations. The nitrobenzene also changes the ZnO band gap energy from 4.59 to 1.85 eV and shifts 0.35 eV the work function value. Under biaxial strain, the nitrobenzene becomes chemisorbed on the ZnO monolayer. Also, remarkable conductivity changes are observed with the nitrobenzene adsorption on the strained ZnO. Excellent values of sensitivity are found, 2.29 × 1023, 8.11 × 1022 and 2.80 × 1016 for strain-free ZnO and the maximum compressed and stretched ZnO monolayer, respectively. Short recovery times of 1.16 × 10−4 s (T = 300 K) and 6.89 × 10−8 s (T = 500 K) are also found for strain-free ZnO monolayer, indicating a great reusability for nitrobenzene. Consequently, the ZnO monolayer can be used to detect nitrobenzene.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Modeling and Molecular Simulation Group São Paulo State University School of Sciences, SPComputational Nanotechnology DETEMA Facultad de Química UDELAR, CC 1157Modeling and Molecular Simulation Group São Paulo State University School of Sciences, SPFAPESP: 2013/07296-2FAPESP: 2022/00349-2FAPESP: 2022/03959-6FAPESP: 2022/05087-1FAPESP: 2022/14576-0FAPESP: 2022/16509-9CNPq: 307213/2021-8Universidade Estadual Paulista (UNESP)UDELARMartins, Nicolas F. [UNESP]Laranjeira, José A. [UNESP]Denis, Pablo A.Sambrano, Julio R. [UNESP]2025-04-29T19:14:40Z2025-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.apsusc.2024.161280Applied Surface Science, v. 679.0169-4332https://hdl.handle.net/11449/30247110.1016/j.apsusc.2024.1612802-s2.0-85204804467Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Surface Scienceinfo:eu-repo/semantics/openAccess2025-06-24T05:11:05Zoai:repositorio.unesp.br:11449/302471Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T05:11:05Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
title High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
spellingShingle High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
Martins, Nicolas F. [UNESP]
2D materials
Gas sensor
Nitrobenzene
Strain engineering
ZnO
title_short High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
title_full High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
title_fullStr High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
title_full_unstemmed High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
title_sort High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
author Martins, Nicolas F. [UNESP]
author_facet Martins, Nicolas F. [UNESP]
Laranjeira, José A. [UNESP]
Denis, Pablo A.
Sambrano, Julio R. [UNESP]
author_role author
author2 Laranjeira, José A. [UNESP]
Denis, Pablo A.
Sambrano, Julio R. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
UDELAR
dc.contributor.author.fl_str_mv Martins, Nicolas F. [UNESP]
Laranjeira, José A. [UNESP]
Denis, Pablo A.
Sambrano, Julio R. [UNESP]
dc.subject.por.fl_str_mv 2D materials
Gas sensor
Nitrobenzene
Strain engineering
ZnO
topic 2D materials
Gas sensor
Nitrobenzene
Strain engineering
ZnO
description Volatile organic compounds (VOCs) emissions have been a recurring problem that has challenged research centers to find new ways to monitor them. From this perspective, this work investigates nitrobenzene sensing through computational simulations, a well-known toxic compound, using the strained and strain-free two-dimensional (2D) ZnO monolayer, a traditional metal oxide semiconductor (MOS). The results indicate that nitrobenzene is adsorbed via strong physisorption on the 2D ZnO and maintains interaction with the sensor under thermal stimulus (500 K), as demonstrated via ab initio molecular dynamics (AIMD) simulations. The nitrobenzene also changes the ZnO band gap energy from 4.59 to 1.85 eV and shifts 0.35 eV the work function value. Under biaxial strain, the nitrobenzene becomes chemisorbed on the ZnO monolayer. Also, remarkable conductivity changes are observed with the nitrobenzene adsorption on the strained ZnO. Excellent values of sensitivity are found, 2.29 × 1023, 8.11 × 1022 and 2.80 × 1016 for strain-free ZnO and the maximum compressed and stretched ZnO monolayer, respectively. Short recovery times of 1.16 × 10−4 s (T = 300 K) and 6.89 × 10−8 s (T = 500 K) are also found for strain-free ZnO monolayer, indicating a great reusability for nitrobenzene. Consequently, the ZnO monolayer can be used to detect nitrobenzene.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-29T19:14:40Z
2025-01-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.apsusc.2024.161280
Applied Surface Science, v. 679.
0169-4332
https://hdl.handle.net/11449/302471
10.1016/j.apsusc.2024.161280
2-s2.0-85204804467
url http://dx.doi.org/10.1016/j.apsusc.2024.161280
https://hdl.handle.net/11449/302471
identifier_str_mv Applied Surface Science, v. 679.
0169-4332
10.1016/j.apsusc.2024.161280
2-s2.0-85204804467
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Surface Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1851766247245479936