High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2025 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1016/j.apsusc.2024.161280 https://hdl.handle.net/11449/302471 |
Resumo: | Volatile organic compounds (VOCs) emissions have been a recurring problem that has challenged research centers to find new ways to monitor them. From this perspective, this work investigates nitrobenzene sensing through computational simulations, a well-known toxic compound, using the strained and strain-free two-dimensional (2D) ZnO monolayer, a traditional metal oxide semiconductor (MOS). The results indicate that nitrobenzene is adsorbed via strong physisorption on the 2D ZnO and maintains interaction with the sensor under thermal stimulus (500 K), as demonstrated via ab initio molecular dynamics (AIMD) simulations. The nitrobenzene also changes the ZnO band gap energy from 4.59 to 1.85 eV and shifts 0.35 eV the work function value. Under biaxial strain, the nitrobenzene becomes chemisorbed on the ZnO monolayer. Also, remarkable conductivity changes are observed with the nitrobenzene adsorption on the strained ZnO. Excellent values of sensitivity are found, 2.29 × 1023, 8.11 × 1022 and 2.80 × 1016 for strain-free ZnO and the maximum compressed and stretched ZnO monolayer, respectively. Short recovery times of 1.16 × 10−4 s (T = 300 K) and 6.89 × 10−8 s (T = 500 K) are also found for strain-free ZnO monolayer, indicating a great reusability for nitrobenzene. Consequently, the ZnO monolayer can be used to detect nitrobenzene. |
| id |
UNSP_e6da2083d9a8a10af90ed2e2765b6c8c |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/302471 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering2D materialsGas sensorNitrobenzeneStrain engineeringZnOVolatile organic compounds (VOCs) emissions have been a recurring problem that has challenged research centers to find new ways to monitor them. From this perspective, this work investigates nitrobenzene sensing through computational simulations, a well-known toxic compound, using the strained and strain-free two-dimensional (2D) ZnO monolayer, a traditional metal oxide semiconductor (MOS). The results indicate that nitrobenzene is adsorbed via strong physisorption on the 2D ZnO and maintains interaction with the sensor under thermal stimulus (500 K), as demonstrated via ab initio molecular dynamics (AIMD) simulations. The nitrobenzene also changes the ZnO band gap energy from 4.59 to 1.85 eV and shifts 0.35 eV the work function value. Under biaxial strain, the nitrobenzene becomes chemisorbed on the ZnO monolayer. Also, remarkable conductivity changes are observed with the nitrobenzene adsorption on the strained ZnO. Excellent values of sensitivity are found, 2.29 × 1023, 8.11 × 1022 and 2.80 × 1016 for strain-free ZnO and the maximum compressed and stretched ZnO monolayer, respectively. Short recovery times of 1.16 × 10−4 s (T = 300 K) and 6.89 × 10−8 s (T = 500 K) are also found for strain-free ZnO monolayer, indicating a great reusability for nitrobenzene. Consequently, the ZnO monolayer can be used to detect nitrobenzene.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Modeling and Molecular Simulation Group São Paulo State University School of Sciences, SPComputational Nanotechnology DETEMA Facultad de Química UDELAR, CC 1157Modeling and Molecular Simulation Group São Paulo State University School of Sciences, SPFAPESP: 2013/07296-2FAPESP: 2022/00349-2FAPESP: 2022/03959-6FAPESP: 2022/05087-1FAPESP: 2022/14576-0FAPESP: 2022/16509-9CNPq: 307213/2021-8Universidade Estadual Paulista (UNESP)UDELARMartins, Nicolas F. [UNESP]Laranjeira, José A. [UNESP]Denis, Pablo A.Sambrano, Julio R. [UNESP]2025-04-29T19:14:40Z2025-01-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.apsusc.2024.161280Applied Surface Science, v. 679.0169-4332https://hdl.handle.net/11449/30247110.1016/j.apsusc.2024.1612802-s2.0-85204804467Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Surface Scienceinfo:eu-repo/semantics/openAccess2025-06-24T05:11:05Zoai:repositorio.unesp.br:11449/302471Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T05:11:05Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| title |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| spellingShingle |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering Martins, Nicolas F. [UNESP] 2D materials Gas sensor Nitrobenzene Strain engineering ZnO |
| title_short |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| title_full |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| title_fullStr |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| title_full_unstemmed |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| title_sort |
High sensitivity of nitrobenzene on the ZnO monolayer and the role of strain engineering |
| author |
Martins, Nicolas F. [UNESP] |
| author_facet |
Martins, Nicolas F. [UNESP] Laranjeira, José A. [UNESP] Denis, Pablo A. Sambrano, Julio R. [UNESP] |
| author_role |
author |
| author2 |
Laranjeira, José A. [UNESP] Denis, Pablo A. Sambrano, Julio R. [UNESP] |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) UDELAR |
| dc.contributor.author.fl_str_mv |
Martins, Nicolas F. [UNESP] Laranjeira, José A. [UNESP] Denis, Pablo A. Sambrano, Julio R. [UNESP] |
| dc.subject.por.fl_str_mv |
2D materials Gas sensor Nitrobenzene Strain engineering ZnO |
| topic |
2D materials Gas sensor Nitrobenzene Strain engineering ZnO |
| description |
Volatile organic compounds (VOCs) emissions have been a recurring problem that has challenged research centers to find new ways to monitor them. From this perspective, this work investigates nitrobenzene sensing through computational simulations, a well-known toxic compound, using the strained and strain-free two-dimensional (2D) ZnO monolayer, a traditional metal oxide semiconductor (MOS). The results indicate that nitrobenzene is adsorbed via strong physisorption on the 2D ZnO and maintains interaction with the sensor under thermal stimulus (500 K), as demonstrated via ab initio molecular dynamics (AIMD) simulations. The nitrobenzene also changes the ZnO band gap energy from 4.59 to 1.85 eV and shifts 0.35 eV the work function value. Under biaxial strain, the nitrobenzene becomes chemisorbed on the ZnO monolayer. Also, remarkable conductivity changes are observed with the nitrobenzene adsorption on the strained ZnO. Excellent values of sensitivity are found, 2.29 × 1023, 8.11 × 1022 and 2.80 × 1016 for strain-free ZnO and the maximum compressed and stretched ZnO monolayer, respectively. Short recovery times of 1.16 × 10−4 s (T = 300 K) and 6.89 × 10−8 s (T = 500 K) are also found for strain-free ZnO monolayer, indicating a great reusability for nitrobenzene. Consequently, the ZnO monolayer can be used to detect nitrobenzene. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-29T19:14:40Z 2025-01-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.apsusc.2024.161280 Applied Surface Science, v. 679. 0169-4332 https://hdl.handle.net/11449/302471 10.1016/j.apsusc.2024.161280 2-s2.0-85204804467 |
| url |
http://dx.doi.org/10.1016/j.apsusc.2024.161280 https://hdl.handle.net/11449/302471 |
| identifier_str_mv |
Applied Surface Science, v. 679. 0169-4332 10.1016/j.apsusc.2024.161280 2-s2.0-85204804467 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Applied Surface Science |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1851766247245479936 |