Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia

Bibliographic Details
Main Author: Silva, Inara Aparecida Ferrer [UNESP]
Publication Date: 2014
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da UNESP
Download full: http://hdl.handle.net/11449/110516
Summary: The fuzzy and neuro fuzzy systems have been successfully used to solve problems in various fields such as medicine, manufacturing, control, agriculture and academic applications. In recent decades, neural networks have been used to the identification, assessment and diagnosis of diseases. In this thesis we performed a comparative study among fuzzy neural networks (ANFIS), multilayer perceptron neural networks (MLP), radial basis function network (RBF) and generalized regression (GRNN) in the area of biomedical engineering and agronomy. In biomedical engineering neural networks and neuro fuzzy were trained and validated with data set from patients (91 subjects, 81 healthy and 10 hemiplegic). The GRNN network had the lowest Root Mean Square Error (RMSE), but the MLP network was able to identify a case of hemiplegia. In the area of agriculture a comparative study to estimate the wheat (Triticum aestivum) productivity was proposed using neural networks. For this study it was used data from an experimental database of wheat cultivars evaluated during two years in the region of Selvíria - MS. The validation was performed by comparing the estimated productivity through the quadratic regression curve and the output of the ANFIS with the neural networks. The RMSE error calculated with the GRNN and RBF neural networks was lower than that obtained with the quadratic regression and the ANFIS. The results obtained in the study of hemiplegia were validated using the RMSE, the confusion matrix, the sensitivity, the specificity and the error accuracy. The results showed that the use of neural networks and fuzzy neural networks, in biomedical engineering, can be a viable for monitoring the progress of patients and discovery new information through a combination of parameters. In agriculture this methodology can bring benefits in combining several evaluation parameters of production to optimize production while minimize financial costs in new plantations
id UNSP_e50f91c8719bc5c3f08512e2bf4aa351
oai_identifier_str oai:repositorio.unesp.br:11449/110516
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomiaLógica difusaHemiplegiaRedes neurais (Computação)Fuzzy logicThe fuzzy and neuro fuzzy systems have been successfully used to solve problems in various fields such as medicine, manufacturing, control, agriculture and academic applications. In recent decades, neural networks have been used to the identification, assessment and diagnosis of diseases. In this thesis we performed a comparative study among fuzzy neural networks (ANFIS), multilayer perceptron neural networks (MLP), radial basis function network (RBF) and generalized regression (GRNN) in the area of biomedical engineering and agronomy. In biomedical engineering neural networks and neuro fuzzy were trained and validated with data set from patients (91 subjects, 81 healthy and 10 hemiplegic). The GRNN network had the lowest Root Mean Square Error (RMSE), but the MLP network was able to identify a case of hemiplegia. In the area of agriculture a comparative study to estimate the wheat (Triticum aestivum) productivity was proposed using neural networks. For this study it was used data from an experimental database of wheat cultivars evaluated during two years in the region of Selvíria - MS. The validation was performed by comparing the estimated productivity through the quadratic regression curve and the output of the ANFIS with the neural networks. The RMSE error calculated with the GRNN and RBF neural networks was lower than that obtained with the quadratic regression and the ANFIS. The results obtained in the study of hemiplegia were validated using the RMSE, the confusion matrix, the sensitivity, the specificity and the error accuracy. The results showed that the use of neural networks and fuzzy neural networks, in biomedical engineering, can be a viable for monitoring the progress of patients and discovery new information through a combination of parameters. In agriculture this methodology can bring benefits in combining several evaluation parameters of production to optimize production while minimize financial costs in new plantationsOs sistemas fuzzy e neuro fuzzy têm sido usados com sucesso para resolver problemas em diversas áreas, como medicina, indústria, controle, agronomia e aplicações acadêmicas. Nas últimas décadas, as redes neurais têm sido utilizadas para identificação, avaliação e previsão e dados na medicina e na agronomia. Nesta tese, realizou-se um novo estudo comparativo entre as redes neuro fuzzy (ANFIS), rede perceptron multicamadas (MLP), rede função de base radial (RBF) e regressão generalizada (GRNN) na área de engenharia biomédica. Na engenharia biomédica as redes neurais e neuro fuzzy foram treinadas e validadas com dados de pacientes hígidos e hemiplégicos (pacientes com sequela motora após acidente vascular cerebral no hemicorpo direito ou esquerdo do cérebro) coletados por meio de um baropodômetro eletrônico (91 indivíduos, sendo 81 hígidos e 10 hemiplégicos). A rede GRNN apresentou o menor erro RMSE (Raiz Quadrada do Erro Médio Quadrático), porém a rede MLP conseguiu identificar um caso de hemiplegia. Na área de agricultura foi proposto um novo estudo comparativo utilizando redes neurais para previsão de produção de trigo (Triticum aestivum). Para este estudo utilizou-se uma base de dados experimental de trigo avaliada no período dois anos na região de Selvíria-MS. A validação foi realizada comparando-se a produção estimada pelas redes neurais MLP, GRNN e RBF com a curva de regressão quadrática, comumente utilizada para este fim, e com a rede neuro fuzzy ANFIS. O erro RMSE calculado com as redes neurais GRNN e RBF foi menor do que o obtido com a regressão quadrática e com o ANFIS utilizando o treinamento (híbrido). Para validação dos resultados obtidos em hemiplegia utilizou-se o RMSE, a matriz de confusão, a sensitividade, a especificidade e a acurácia. Os resultados mostraram que a utilização das redes neurais e redes neuro fuzzy, na engenharia biomédica, pode ser uma alternativa viável para ...Universidade Estadual Paulista (Unesp)Teixeira, Marcelo Carvalho Minhoto [UNESP]Universidade Estadual Paulista (Unesp)Silva, Inara Aparecida Ferrer [UNESP]2014-11-10T11:09:48Z2014-11-10T11:09:48Z2014-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis80 f.application/pdfSILVA, Inara Aparecida Ferrer. Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia. 2014. 80 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2014.http://hdl.handle.net/11449/110516000794379000794379.pdf33004099080P08879964582778840Alephreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPporinfo:eu-repo/semantics/openAccess2024-08-05T17:59:28Zoai:repositorio.unesp.br:11449/110516Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-08-05T17:59:28Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
title Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
spellingShingle Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
Silva, Inara Aparecida Ferrer [UNESP]
Lógica difusa
Hemiplegia
Redes neurais (Computação)
Fuzzy logic
title_short Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
title_full Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
title_fullStr Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
title_full_unstemmed Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
title_sort Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia
author Silva, Inara Aparecida Ferrer [UNESP]
author_facet Silva, Inara Aparecida Ferrer [UNESP]
author_role author
dc.contributor.none.fl_str_mv Teixeira, Marcelo Carvalho Minhoto [UNESP]
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Silva, Inara Aparecida Ferrer [UNESP]
dc.subject.por.fl_str_mv Lógica difusa
Hemiplegia
Redes neurais (Computação)
Fuzzy logic
topic Lógica difusa
Hemiplegia
Redes neurais (Computação)
Fuzzy logic
description The fuzzy and neuro fuzzy systems have been successfully used to solve problems in various fields such as medicine, manufacturing, control, agriculture and academic applications. In recent decades, neural networks have been used to the identification, assessment and diagnosis of diseases. In this thesis we performed a comparative study among fuzzy neural networks (ANFIS), multilayer perceptron neural networks (MLP), radial basis function network (RBF) and generalized regression (GRNN) in the area of biomedical engineering and agronomy. In biomedical engineering neural networks and neuro fuzzy were trained and validated with data set from patients (91 subjects, 81 healthy and 10 hemiplegic). The GRNN network had the lowest Root Mean Square Error (RMSE), but the MLP network was able to identify a case of hemiplegia. In the area of agriculture a comparative study to estimate the wheat (Triticum aestivum) productivity was proposed using neural networks. For this study it was used data from an experimental database of wheat cultivars evaluated during two years in the region of Selvíria - MS. The validation was performed by comparing the estimated productivity through the quadratic regression curve and the output of the ANFIS with the neural networks. The RMSE error calculated with the GRNN and RBF neural networks was lower than that obtained with the quadratic regression and the ANFIS. The results obtained in the study of hemiplegia were validated using the RMSE, the confusion matrix, the sensitivity, the specificity and the error accuracy. The results showed that the use of neural networks and fuzzy neural networks, in biomedical engineering, can be a viable for monitoring the progress of patients and discovery new information through a combination of parameters. In agriculture this methodology can bring benefits in combining several evaluation parameters of production to optimize production while minimize financial costs in new plantations
publishDate 2014
dc.date.none.fl_str_mv 2014-11-10T11:09:48Z
2014-11-10T11:09:48Z
2014-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SILVA, Inara Aparecida Ferrer. Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia. 2014. 80 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2014.
http://hdl.handle.net/11449/110516
000794379
000794379.pdf
33004099080P0
8879964582778840
identifier_str_mv SILVA, Inara Aparecida Ferrer. Aplicações de redes neurais e neuro fuzzy em engenharia biomédica e agronomia. 2014. 80 f. Tese (doutorado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Engenharia de Ilha Solteira, 2014.
000794379
000794379.pdf
33004099080P0
8879964582778840
url http://hdl.handle.net/11449/110516
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 80 f.
application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
publisher.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.source.none.fl_str_mv Aleph
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483935276433408