A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment

Bibliographic Details
Main Author: Oliveira, Guilherme C. [UNESP]
Publication Date: 2024
Other Authors: Ngo, Quoc C., Papa, Joao P. [UNESP], Kumar, Dinesh
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/CBMS61543.2024.00034
https://hdl.handle.net/11449/305779
Summary: Thermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds.
id UNSP_e231e67d2da3cfce6cc8fda142c07bf1
oai_identifier_str oai:repositorio.unesp.br:11449/305779
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer AssessmentImage to ImageLeg UlcerMachine learningStable DiffusionThermal ImageThermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds.Royal Melbourne Institute of TechnologySão Paulo State UniversitySão Paulo State UniversityRoyal Melbourne Institute of TechnologyUniversidade Estadual Paulista (UNESP)Oliveira, Guilherme C. [UNESP]Ngo, Quoc C.Papa, Joao P. [UNESP]Kumar, Dinesh2025-04-29T20:04:10Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject158-163http://dx.doi.org/10.1109/CBMS61543.2024.00034Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163.1063-7125https://hdl.handle.net/11449/30577910.1109/CBMS61543.2024.000342-s2.0-85200463788Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - IEEE Symposium on Computer-Based Medical Systemsinfo:eu-repo/semantics/openAccess2025-04-30T14:32:30Zoai:repositorio.unesp.br:11449/305779Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:32:30Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
title A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
spellingShingle A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
Oliveira, Guilherme C. [UNESP]
Image to Image
Leg Ulcer
Machine learning
Stable Diffusion
Thermal Image
title_short A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
title_full A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
title_fullStr A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
title_full_unstemmed A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
title_sort A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
author Oliveira, Guilherme C. [UNESP]
author_facet Oliveira, Guilherme C. [UNESP]
Ngo, Quoc C.
Papa, Joao P. [UNESP]
Kumar, Dinesh
author_role author
author2 Ngo, Quoc C.
Papa, Joao P. [UNESP]
Kumar, Dinesh
author2_role author
author
author
dc.contributor.none.fl_str_mv Royal Melbourne Institute of Technology
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Oliveira, Guilherme C. [UNESP]
Ngo, Quoc C.
Papa, Joao P. [UNESP]
Kumar, Dinesh
dc.subject.por.fl_str_mv Image to Image
Leg Ulcer
Machine learning
Stable Diffusion
Thermal Image
topic Image to Image
Leg Ulcer
Machine learning
Stable Diffusion
Thermal Image
description Thermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-01
2025-04-29T20:04:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/CBMS61543.2024.00034
Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163.
1063-7125
https://hdl.handle.net/11449/305779
10.1109/CBMS61543.2024.00034
2-s2.0-85200463788
url http://dx.doi.org/10.1109/CBMS61543.2024.00034
https://hdl.handle.net/11449/305779
identifier_str_mv Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163.
1063-7125
10.1109/CBMS61543.2024.00034
2-s2.0-85200463788
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - IEEE Symposium on Computer-Based Medical Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 158-163
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482662697336832