A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1109/CBMS61543.2024.00034 https://hdl.handle.net/11449/305779 |
Summary: | Thermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds. |
id |
UNSP_e231e67d2da3cfce6cc8fda142c07bf1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/305779 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer AssessmentImage to ImageLeg UlcerMachine learningStable DiffusionThermal ImageThermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds.Royal Melbourne Institute of TechnologySão Paulo State UniversitySão Paulo State UniversityRoyal Melbourne Institute of TechnologyUniversidade Estadual Paulista (UNESP)Oliveira, Guilherme C. [UNESP]Ngo, Quoc C.Papa, Joao P. [UNESP]Kumar, Dinesh2025-04-29T20:04:10Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject158-163http://dx.doi.org/10.1109/CBMS61543.2024.00034Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163.1063-7125https://hdl.handle.net/11449/30577910.1109/CBMS61543.2024.000342-s2.0-85200463788Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - IEEE Symposium on Computer-Based Medical Systemsinfo:eu-repo/semantics/openAccess2025-04-30T14:32:30Zoai:repositorio.unesp.br:11449/305779Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:32:30Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
title |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
spellingShingle |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment Oliveira, Guilherme C. [UNESP] Image to Image Leg Ulcer Machine learning Stable Diffusion Thermal Image |
title_short |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
title_full |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
title_fullStr |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
title_full_unstemmed |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
title_sort |
A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment |
author |
Oliveira, Guilherme C. [UNESP] |
author_facet |
Oliveira, Guilherme C. [UNESP] Ngo, Quoc C. Papa, Joao P. [UNESP] Kumar, Dinesh |
author_role |
author |
author2 |
Ngo, Quoc C. Papa, Joao P. [UNESP] Kumar, Dinesh |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Royal Melbourne Institute of Technology Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Oliveira, Guilherme C. [UNESP] Ngo, Quoc C. Papa, Joao P. [UNESP] Kumar, Dinesh |
dc.subject.por.fl_str_mv |
Image to Image Leg Ulcer Machine learning Stable Diffusion Thermal Image |
topic |
Image to Image Leg Ulcer Machine learning Stable Diffusion Thermal Image |
description |
Thermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-01 2025-04-29T20:04:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/CBMS61543.2024.00034 Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163. 1063-7125 https://hdl.handle.net/11449/305779 10.1109/CBMS61543.2024.00034 2-s2.0-85200463788 |
url |
http://dx.doi.org/10.1109/CBMS61543.2024.00034 https://hdl.handle.net/11449/305779 |
identifier_str_mv |
Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163. 1063-7125 10.1109/CBMS61543.2024.00034 2-s2.0-85200463788 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - IEEE Symposium on Computer-Based Medical Systems |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
158-163 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482662697336832 |