Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , , , , , , , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/978-3-031-34344-5_32 https://hdl.handle.net/11449/306190 |
Summary: | This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types. |
id |
UNSP_d6d331667b9fa0fea1f53cbc54812ca1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/306190 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian PortuguesePANNsRespiratory InsufficiencyTransformersThis work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.Universidade de São Paulo, Butanta, SPUniversidade Estadual Paulista, SPUniversidade Estadual Paulista, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Gauy, Marcelo MatheusBerti, Larissa Cristina [UNESP]Cândido, Arnaldo [UNESP]Neto, Augusto CamargoGoldman, AlfredoLevin, Anna Sara ShaffermanMartins, Marcusde Medeiros, Beatriz RaposoQueiroz, MarceloSabino, Ester CerdeiraSvartman, Flaviane Romani FernandesFinger, Marcelo2025-04-29T20:05:34Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject271-275http://dx.doi.org/10.1007/978-3-031-34344-5_32Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275.1611-33490302-9743https://hdl.handle.net/11449/30619010.1007/978-3-031-34344-5_322-s2.0-85163947875Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2025-04-30T13:59:38Zoai:repositorio.unesp.br:11449/306190Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:59:38Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
title |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
spellingShingle |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese Gauy, Marcelo Matheus PANNs Respiratory Insufficiency Transformers |
title_short |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
title_full |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
title_fullStr |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
title_full_unstemmed |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
title_sort |
Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese |
author |
Gauy, Marcelo Matheus |
author_facet |
Gauy, Marcelo Matheus Berti, Larissa Cristina [UNESP] Cândido, Arnaldo [UNESP] Neto, Augusto Camargo Goldman, Alfredo Levin, Anna Sara Shafferman Martins, Marcus de Medeiros, Beatriz Raposo Queiroz, Marcelo Sabino, Ester Cerdeira Svartman, Flaviane Romani Fernandes Finger, Marcelo |
author_role |
author |
author2 |
Berti, Larissa Cristina [UNESP] Cândido, Arnaldo [UNESP] Neto, Augusto Camargo Goldman, Alfredo Levin, Anna Sara Shafferman Martins, Marcus de Medeiros, Beatriz Raposo Queiroz, Marcelo Sabino, Ester Cerdeira Svartman, Flaviane Romani Fernandes Finger, Marcelo |
author2_role |
author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Gauy, Marcelo Matheus Berti, Larissa Cristina [UNESP] Cândido, Arnaldo [UNESP] Neto, Augusto Camargo Goldman, Alfredo Levin, Anna Sara Shafferman Martins, Marcus de Medeiros, Beatriz Raposo Queiroz, Marcelo Sabino, Ester Cerdeira Svartman, Flaviane Romani Fernandes Finger, Marcelo |
dc.subject.por.fl_str_mv |
PANNs Respiratory Insufficiency Transformers |
topic |
PANNs Respiratory Insufficiency Transformers |
description |
This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-01 2025-04-29T20:05:34Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-031-34344-5_32 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275. 1611-3349 0302-9743 https://hdl.handle.net/11449/306190 10.1007/978-3-031-34344-5_32 2-s2.0-85163947875 |
url |
http://dx.doi.org/10.1007/978-3-031-34344-5_32 https://hdl.handle.net/11449/306190 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275. 1611-3349 0302-9743 10.1007/978-3-031-34344-5_32 2-s2.0-85163947875 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
271-275 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482406400196608 |