Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese

Bibliographic Details
Main Author: Gauy, Marcelo Matheus
Publication Date: 2023
Other Authors: Berti, Larissa Cristina [UNESP], Cândido, Arnaldo [UNESP], Neto, Augusto Camargo, Goldman, Alfredo, Levin, Anna Sara Shafferman, Martins, Marcus, de Medeiros, Beatriz Raposo, Queiroz, Marcelo, Sabino, Ester Cerdeira, Svartman, Flaviane Romani Fernandes, Finger, Marcelo
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/978-3-031-34344-5_32
https://hdl.handle.net/11449/306190
Summary: This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.
id UNSP_d6d331667b9fa0fea1f53cbc54812ca1
oai_identifier_str oai:repositorio.unesp.br:11449/306190
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian PortuguesePANNsRespiratory InsufficiencyTransformersThis work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.Universidade de São Paulo, Butanta, SPUniversidade Estadual Paulista, SPUniversidade Estadual Paulista, SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Gauy, Marcelo MatheusBerti, Larissa Cristina [UNESP]Cândido, Arnaldo [UNESP]Neto, Augusto CamargoGoldman, AlfredoLevin, Anna Sara ShaffermanMartins, Marcusde Medeiros, Beatriz RaposoQueiroz, MarceloSabino, Ester CerdeiraSvartman, Flaviane Romani FernandesFinger, Marcelo2025-04-29T20:05:34Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject271-275http://dx.doi.org/10.1007/978-3-031-34344-5_32Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275.1611-33490302-9743https://hdl.handle.net/11449/30619010.1007/978-3-031-34344-5_322-s2.0-85163947875Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)info:eu-repo/semantics/openAccess2025-04-30T13:59:38Zoai:repositorio.unesp.br:11449/306190Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:59:38Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
title Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
spellingShingle Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
Gauy, Marcelo Matheus
PANNs
Respiratory Insufficiency
Transformers
title_short Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
title_full Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
title_fullStr Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
title_full_unstemmed Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
title_sort Discriminant Audio Properties in Deep Learning Based Respiratory Insufficiency Detection in Brazilian Portuguese
author Gauy, Marcelo Matheus
author_facet Gauy, Marcelo Matheus
Berti, Larissa Cristina [UNESP]
Cândido, Arnaldo [UNESP]
Neto, Augusto Camargo
Goldman, Alfredo
Levin, Anna Sara Shafferman
Martins, Marcus
de Medeiros, Beatriz Raposo
Queiroz, Marcelo
Sabino, Ester Cerdeira
Svartman, Flaviane Romani Fernandes
Finger, Marcelo
author_role author
author2 Berti, Larissa Cristina [UNESP]
Cândido, Arnaldo [UNESP]
Neto, Augusto Camargo
Goldman, Alfredo
Levin, Anna Sara Shafferman
Martins, Marcus
de Medeiros, Beatriz Raposo
Queiroz, Marcelo
Sabino, Ester Cerdeira
Svartman, Flaviane Romani Fernandes
Finger, Marcelo
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Gauy, Marcelo Matheus
Berti, Larissa Cristina [UNESP]
Cândido, Arnaldo [UNESP]
Neto, Augusto Camargo
Goldman, Alfredo
Levin, Anna Sara Shafferman
Martins, Marcus
de Medeiros, Beatriz Raposo
Queiroz, Marcelo
Sabino, Ester Cerdeira
Svartman, Flaviane Romani Fernandes
Finger, Marcelo
dc.subject.por.fl_str_mv PANNs
Respiratory Insufficiency
Transformers
topic PANNs
Respiratory Insufficiency
Transformers
description This work investigates Artificial Intelligence (AI) systems that detect respiratory insufficiency (RI) by analyzing speech audios, thus treating speech as a RI biomarker. Previous works [2, 6] collected RI data (P1) from COVID-19 patients during the first phase of the pandemic and trained modern AI models, such as CNNs and Transformers, which achieved 96.5 % accuracy, showing the feasibility of RI detection via AI. Here, we collect RI patient data (P2) with several causes besides COVID-19, aiming at extending AI-based RI detection. We also collected control data from hospital patients without RI. We show that the considered models, when trained on P1, do not generalize to P2, indicating that COVID-19 RI has features that may not be found in all RI types.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01
2025-04-29T20:05:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-031-34344-5_32
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275.
1611-3349
0302-9743
https://hdl.handle.net/11449/306190
10.1007/978-3-031-34344-5_32
2-s2.0-85163947875
url http://dx.doi.org/10.1007/978-3-031-34344-5_32
https://hdl.handle.net/11449/306190
identifier_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 13897 LNAI, p. 271-275.
1611-3349
0302-9743
10.1007/978-3-031-34344-5_32
2-s2.0-85163947875
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 271-275
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482406400196608