OPFSumm: on the video summarization using Optimum-Path Forest
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2020 |
| Outros Autores: | , , , |
| Tipo de documento: | Artigo |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1007/s11042-018-5874-z http://hdl.handle.net/11449/196902 |
Resumo: | Video summarization attempts at encoding a given video into a compact representation for a better storage and retrieval purposes. This work copes with the problem of static video summarization using the unsupervised Optimum-Path Forest (OPF). We sampled the encoded video sequence into frames and extracted features based on color information or spectral properties. After that, meaningless frames are removed, and OPF models the problem of video summarization as a clustering process. Possible redundant keyframes are filtered, and at last the video summary is created based on non-redundant keyframes. We presented a more in-depth study that also considers temporal information to obtain better video representations. The experiments over three public datasets were analyzed through F-measure evaluation metric and showed the robustness of OPF for automatic video summarization: 0.19 for SumMe dataset, 0.728 concerning Open Video dataset, and 0.451 regarding YouTube dataset.. |
| id |
UNSP_cbffe772b9a6732044fe691914d0fd0b |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/196902 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
OPFSumm: on the video summarization using Optimum-Path ForestVideo summarizationOptimum-path forestOPFSummMultimedia toolsVideo summarization attempts at encoding a given video into a compact representation for a better storage and retrieval purposes. This work copes with the problem of static video summarization using the unsupervised Optimum-Path Forest (OPF). We sampled the encoded video sequence into frames and extracted features based on color information or spectral properties. After that, meaningless frames are removed, and OPF models the problem of video summarization as a clustering process. Possible redundant keyframes are filtered, and at last the video summary is created based on non-redundant keyframes. We presented a more in-depth study that also considers temporal information to obtain better video representations. The experiments over three public datasets were analyzed through F-measure evaluation metric and showed the robustness of OPF for automatic video summarization: 0.19 for SumMe dataset, 0.728 concerning Open Video dataset, and 0.451 regarding YouTube dataset..Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilUniv Fed Sao Paulo, Inst Sci & Technol, Sao Paulo, BrazilUniv Fortaleza, Grad Program Appl Informat, Fortaleza, CE, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSpringerUniversidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)Univ FortalezaMartins, Guilherme B. [UNESP]Pereira, Danillo R. [UNESP]Almeida, Jurandy G.Albuquerque, Victor Hugo C. dePapa, Joao Paulo [UNESP]2020-12-10T19:59:50Z2020-12-10T19:59:50Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11195-11211http://dx.doi.org/10.1007/s11042-018-5874-zMultimedia Tools And Applications. Dordrecht: Springer, v. 79, n. 15-16, p. 11195-11211, 2020.1380-7501http://hdl.handle.net/11449/19690210.1007/s11042-018-5874-zWOS:000534781600078Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMultimedia Tools And Applicationsinfo:eu-repo/semantics/openAccess2025-06-24T06:13:48Zoai:repositorio.unesp.br:11449/196902Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T06:13:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
OPFSumm: on the video summarization using Optimum-Path Forest |
| title |
OPFSumm: on the video summarization using Optimum-Path Forest |
| spellingShingle |
OPFSumm: on the video summarization using Optimum-Path Forest Martins, Guilherme B. [UNESP] Video summarization Optimum-path forest OPFSumm Multimedia tools |
| title_short |
OPFSumm: on the video summarization using Optimum-Path Forest |
| title_full |
OPFSumm: on the video summarization using Optimum-Path Forest |
| title_fullStr |
OPFSumm: on the video summarization using Optimum-Path Forest |
| title_full_unstemmed |
OPFSumm: on the video summarization using Optimum-Path Forest |
| title_sort |
OPFSumm: on the video summarization using Optimum-Path Forest |
| author |
Martins, Guilherme B. [UNESP] |
| author_facet |
Martins, Guilherme B. [UNESP] Pereira, Danillo R. [UNESP] Almeida, Jurandy G. Albuquerque, Victor Hugo C. de Papa, Joao Paulo [UNESP] |
| author_role |
author |
| author2 |
Pereira, Danillo R. [UNESP] Almeida, Jurandy G. Albuquerque, Victor Hugo C. de Papa, Joao Paulo [UNESP] |
| author2_role |
author author author author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Paulo (UNIFESP) Univ Fortaleza |
| dc.contributor.author.fl_str_mv |
Martins, Guilherme B. [UNESP] Pereira, Danillo R. [UNESP] Almeida, Jurandy G. Albuquerque, Victor Hugo C. de Papa, Joao Paulo [UNESP] |
| dc.subject.por.fl_str_mv |
Video summarization Optimum-path forest OPFSumm Multimedia tools |
| topic |
Video summarization Optimum-path forest OPFSumm Multimedia tools |
| description |
Video summarization attempts at encoding a given video into a compact representation for a better storage and retrieval purposes. This work copes with the problem of static video summarization using the unsupervised Optimum-Path Forest (OPF). We sampled the encoded video sequence into frames and extracted features based on color information or spectral properties. After that, meaningless frames are removed, and OPF models the problem of video summarization as a clustering process. Possible redundant keyframes are filtered, and at last the video summary is created based on non-redundant keyframes. We presented a more in-depth study that also considers temporal information to obtain better video representations. The experiments over three public datasets were analyzed through F-measure evaluation metric and showed the robustness of OPF for automatic video summarization: 0.19 for SumMe dataset, 0.728 concerning Open Video dataset, and 0.451 regarding YouTube dataset.. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-12-10T19:59:50Z 2020-12-10T19:59:50Z 2020-04-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11042-018-5874-z Multimedia Tools And Applications. Dordrecht: Springer, v. 79, n. 15-16, p. 11195-11211, 2020. 1380-7501 http://hdl.handle.net/11449/196902 10.1007/s11042-018-5874-z WOS:000534781600078 |
| url |
http://dx.doi.org/10.1007/s11042-018-5874-z http://hdl.handle.net/11449/196902 |
| identifier_str_mv |
Multimedia Tools And Applications. Dordrecht: Springer, v. 79, n. 15-16, p. 11195-11211, 2020. 1380-7501 10.1007/s11042-018-5874-z WOS:000534781600078 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Multimedia Tools And Applications |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
11195-11211 |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1854948973319553024 |