OPFSumm: on the video summarization using Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Martins, Guilherme B. [UNESP]
Data de Publicação: 2020
Outros Autores: Pereira, Danillo R. [UNESP], Almeida, Jurandy G., Albuquerque, Victor Hugo C. de, Papa, Joao Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s11042-018-5874-z
http://hdl.handle.net/11449/196902
Resumo: Video summarization attempts at encoding a given video into a compact representation for a better storage and retrieval purposes. This work copes with the problem of static video summarization using the unsupervised Optimum-Path Forest (OPF). We sampled the encoded video sequence into frames and extracted features based on color information or spectral properties. After that, meaningless frames are removed, and OPF models the problem of video summarization as a clustering process. Possible redundant keyframes are filtered, and at last the video summary is created based on non-redundant keyframes. We presented a more in-depth study that also considers temporal information to obtain better video representations. The experiments over three public datasets were analyzed through F-measure evaluation metric and showed the robustness of OPF for automatic video summarization: 0.19 for SumMe dataset, 0.728 concerning Open Video dataset, and 0.451 regarding YouTube dataset..
id UNSP_cbffe772b9a6732044fe691914d0fd0b
oai_identifier_str oai:repositorio.unesp.br:11449/196902
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling OPFSumm: on the video summarization using Optimum-Path ForestVideo summarizationOptimum-path forestOPFSummMultimedia toolsVideo summarization attempts at encoding a given video into a compact representation for a better storage and retrieval purposes. This work copes with the problem of static video summarization using the unsupervised Optimum-Path Forest (OPF). We sampled the encoded video sequence into frames and extracted features based on color information or spectral properties. After that, meaningless frames are removed, and OPF models the problem of video summarization as a clustering process. Possible redundant keyframes are filtered, and at last the video summary is created based on non-redundant keyframes. We presented a more in-depth study that also considers temporal information to obtain better video representations. The experiments over three public datasets were analyzed through F-measure evaluation metric and showed the robustness of OPF for automatic video summarization: 0.19 for SumMe dataset, 0.728 concerning Open Video dataset, and 0.451 regarding YouTube dataset..Sao Paulo State Univ, Dept Comp, Bauru, SP, BrazilUniv Fed Sao Paulo, Inst Sci & Technol, Sao Paulo, BrazilUniv Fortaleza, Grad Program Appl Informat, Fortaleza, CE, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSpringerUniversidade Estadual Paulista (Unesp)Universidade Federal de São Paulo (UNIFESP)Univ FortalezaMartins, Guilherme B. [UNESP]Pereira, Danillo R. [UNESP]Almeida, Jurandy G.Albuquerque, Victor Hugo C. dePapa, Joao Paulo [UNESP]2020-12-10T19:59:50Z2020-12-10T19:59:50Z2020-04-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11195-11211http://dx.doi.org/10.1007/s11042-018-5874-zMultimedia Tools And Applications. Dordrecht: Springer, v. 79, n. 15-16, p. 11195-11211, 2020.1380-7501http://hdl.handle.net/11449/19690210.1007/s11042-018-5874-zWOS:000534781600078Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMultimedia Tools And Applicationsinfo:eu-repo/semantics/openAccess2025-06-24T06:13:48Zoai:repositorio.unesp.br:11449/196902Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-06-24T06:13:48Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv OPFSumm: on the video summarization using Optimum-Path Forest
title OPFSumm: on the video summarization using Optimum-Path Forest
spellingShingle OPFSumm: on the video summarization using Optimum-Path Forest
Martins, Guilherme B. [UNESP]
Video summarization
Optimum-path forest
OPFSumm
Multimedia tools
title_short OPFSumm: on the video summarization using Optimum-Path Forest
title_full OPFSumm: on the video summarization using Optimum-Path Forest
title_fullStr OPFSumm: on the video summarization using Optimum-Path Forest
title_full_unstemmed OPFSumm: on the video summarization using Optimum-Path Forest
title_sort OPFSumm: on the video summarization using Optimum-Path Forest
author Martins, Guilherme B. [UNESP]
author_facet Martins, Guilherme B. [UNESP]
Pereira, Danillo R. [UNESP]
Almeida, Jurandy G.
Albuquerque, Victor Hugo C. de
Papa, Joao Paulo [UNESP]
author_role author
author2 Pereira, Danillo R. [UNESP]
Almeida, Jurandy G.
Albuquerque, Victor Hugo C. de
Papa, Joao Paulo [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Paulo (UNIFESP)
Univ Fortaleza
dc.contributor.author.fl_str_mv Martins, Guilherme B. [UNESP]
Pereira, Danillo R. [UNESP]
Almeida, Jurandy G.
Albuquerque, Victor Hugo C. de
Papa, Joao Paulo [UNESP]
dc.subject.por.fl_str_mv Video summarization
Optimum-path forest
OPFSumm
Multimedia tools
topic Video summarization
Optimum-path forest
OPFSumm
Multimedia tools
description Video summarization attempts at encoding a given video into a compact representation for a better storage and retrieval purposes. This work copes with the problem of static video summarization using the unsupervised Optimum-Path Forest (OPF). We sampled the encoded video sequence into frames and extracted features based on color information or spectral properties. After that, meaningless frames are removed, and OPF models the problem of video summarization as a clustering process. Possible redundant keyframes are filtered, and at last the video summary is created based on non-redundant keyframes. We presented a more in-depth study that also considers temporal information to obtain better video representations. The experiments over three public datasets were analyzed through F-measure evaluation metric and showed the robustness of OPF for automatic video summarization: 0.19 for SumMe dataset, 0.728 concerning Open Video dataset, and 0.451 regarding YouTube dataset..
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T19:59:50Z
2020-12-10T19:59:50Z
2020-04-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s11042-018-5874-z
Multimedia Tools And Applications. Dordrecht: Springer, v. 79, n. 15-16, p. 11195-11211, 2020.
1380-7501
http://hdl.handle.net/11449/196902
10.1007/s11042-018-5874-z
WOS:000534781600078
url http://dx.doi.org/10.1007/s11042-018-5874-z
http://hdl.handle.net/11449/196902
identifier_str_mv Multimedia Tools And Applications. Dordrecht: Springer, v. 79, n. 15-16, p. 11195-11211, 2020.
1380-7501
10.1007/s11042-018-5874-z
WOS:000534781600078
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Multimedia Tools And Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 11195-11211
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1854948973319553024