Genetic algorithm for optimization of the aedes aegypti control strategies

Bibliographic Details
Main Author: Florentino, Helenice O. [UNESP]
Publication Date: 2018
Other Authors: Cantane, Daniela R. [UNESP], Santos, Fernando L.P. [UNESP], Reis, Célia A. [UNESP], Pato, Margarida V., Jones, Dylan, Cerasuolo, Marianna, Oliveira, Rogério A. [UNESP], Lyra, Luiz G. [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1590/0101-7438.2018.038.03.0389
http://hdl.handle.net/11449/188657
Summary: Dengue Fever, Zika and Chikungunya are febrile infectious diseases transmitted by the Aedes species of mosquito with a high rate of mortality. The most common vector is Aedes aegypti. According to World Health Organization outbreaks of mosquito-borne illnesses are common in the tropical and subtropical climates, as there are currently no vaccines to protect against Dengue Fever, Chikungunya or Zika diseases. Hence, mosquito control is the only known method to protect human populations. Consequently, the affected countries need urgently search for better tools and sustained control interventions in order to stop the growing spread of the vector. This study presents an optimization model, involving chemical, biological and physical control decisions that can be applied to fight against the Aedes mosquito. To determine solutions for the optimization problem a genetic heuristic is proposed. Through the computational experiments, the algorithm shows considerable efficiency in achieving solutions that can support decision makers in controlling the mosquito population.
id UNSP_ca1f6cd5138cfe4a2c27f14bb57ca088
oai_identifier_str oai:repositorio.unesp.br:11449/188657
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Genetic algorithm for optimization of the aedes aegypti control strategiesGenetic algorithmsHealthcare operational researchOptimization modelsDengue Fever, Zika and Chikungunya are febrile infectious diseases transmitted by the Aedes species of mosquito with a high rate of mortality. The most common vector is Aedes aegypti. According to World Health Organization outbreaks of mosquito-borne illnesses are common in the tropical and subtropical climates, as there are currently no vaccines to protect against Dengue Fever, Chikungunya or Zika diseases. Hence, mosquito control is the only known method to protect human populations. Consequently, the affected countries need urgently search for better tools and sustained control interventions in order to stop the growing spread of the vector. This study presents an optimization model, involving chemical, biological and physical control decisions that can be applied to fight against the Aedes mosquito. To determine solutions for the optimization problem a genetic heuristic is proposed. Through the computational experiments, the algorithm shows considerable efficiency in achieving solutions that can support decision makers in controlling the mosquito population.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para a Ciência e a TecnologiaUniversidade Estadual PaulistaDepartamento de Bioestatística – IB UNESP, Bairro Rubião JúniorDepartamento de Matemática – FC UNESPISEG and CMAFCIO Universidade de LisboaCentre for Operational Research and Logistics University of PortsmouthDepartment of Mathematics University of PortsmouthDepartamento de Bioestatística – IB UNESP, Bairro Rubião JúniorDepartamento de Matemática – FC UNESPFUNDUNESP: 0351/019/13FAPESP: 2009/14901-4FAPESP: 2009/15098-0FAPESP: 2010/07585-6FAPESP: 2014/01604-0CNPq: 302454/2016-0Universidade Estadual Paulista (Unesp)Universidade de LisboaUniversity of PortsmouthFlorentino, Helenice O. [UNESP]Cantane, Daniela R. [UNESP]Santos, Fernando L.P. [UNESP]Reis, Célia A. [UNESP]Pato, Margarida V.Jones, DylanCerasuolo, MariannaOliveira, Rogério A. [UNESP]Lyra, Luiz G. [UNESP]2019-10-06T16:15:02Z2019-10-06T16:15:02Z2018-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article389-411application/pdfhttp://dx.doi.org/10.1590/0101-7438.2018.038.03.0389Pesquisa Operacional, v. 38, n. 3, p. 389-411, 2018.1678-51420101-7438http://hdl.handle.net/11449/18865710.1590/0101-7438.2018.038.03.0389S0101-743820180003003892-s2.0-85060399899S0101-74382018000300389.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacionalinfo:eu-repo/semantics/openAccess2024-10-08T14:59:01Zoai:repositorio.unesp.br:11449/188657Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-10-08T14:59:01Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Genetic algorithm for optimization of the aedes aegypti control strategies
title Genetic algorithm for optimization of the aedes aegypti control strategies
spellingShingle Genetic algorithm for optimization of the aedes aegypti control strategies
Florentino, Helenice O. [UNESP]
Genetic algorithms
Healthcare operational research
Optimization models
title_short Genetic algorithm for optimization of the aedes aegypti control strategies
title_full Genetic algorithm for optimization of the aedes aegypti control strategies
title_fullStr Genetic algorithm for optimization of the aedes aegypti control strategies
title_full_unstemmed Genetic algorithm for optimization of the aedes aegypti control strategies
title_sort Genetic algorithm for optimization of the aedes aegypti control strategies
author Florentino, Helenice O. [UNESP]
author_facet Florentino, Helenice O. [UNESP]
Cantane, Daniela R. [UNESP]
Santos, Fernando L.P. [UNESP]
Reis, Célia A. [UNESP]
Pato, Margarida V.
Jones, Dylan
Cerasuolo, Marianna
Oliveira, Rogério A. [UNESP]
Lyra, Luiz G. [UNESP]
author_role author
author2 Cantane, Daniela R. [UNESP]
Santos, Fernando L.P. [UNESP]
Reis, Célia A. [UNESP]
Pato, Margarida V.
Jones, Dylan
Cerasuolo, Marianna
Oliveira, Rogério A. [UNESP]
Lyra, Luiz G. [UNESP]
author2_role author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade de Lisboa
University of Portsmouth
dc.contributor.author.fl_str_mv Florentino, Helenice O. [UNESP]
Cantane, Daniela R. [UNESP]
Santos, Fernando L.P. [UNESP]
Reis, Célia A. [UNESP]
Pato, Margarida V.
Jones, Dylan
Cerasuolo, Marianna
Oliveira, Rogério A. [UNESP]
Lyra, Luiz G. [UNESP]
dc.subject.por.fl_str_mv Genetic algorithms
Healthcare operational research
Optimization models
topic Genetic algorithms
Healthcare operational research
Optimization models
description Dengue Fever, Zika and Chikungunya are febrile infectious diseases transmitted by the Aedes species of mosquito with a high rate of mortality. The most common vector is Aedes aegypti. According to World Health Organization outbreaks of mosquito-borne illnesses are common in the tropical and subtropical climates, as there are currently no vaccines to protect against Dengue Fever, Chikungunya or Zika diseases. Hence, mosquito control is the only known method to protect human populations. Consequently, the affected countries need urgently search for better tools and sustained control interventions in order to stop the growing spread of the vector. This study presents an optimization model, involving chemical, biological and physical control decisions that can be applied to fight against the Aedes mosquito. To determine solutions for the optimization problem a genetic heuristic is proposed. Through the computational experiments, the algorithm shows considerable efficiency in achieving solutions that can support decision makers in controlling the mosquito population.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-01
2019-10-06T16:15:02Z
2019-10-06T16:15:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/0101-7438.2018.038.03.0389
Pesquisa Operacional, v. 38, n. 3, p. 389-411, 2018.
1678-5142
0101-7438
http://hdl.handle.net/11449/188657
10.1590/0101-7438.2018.038.03.0389
S0101-74382018000300389
2-s2.0-85060399899
S0101-74382018000300389.pdf
url http://dx.doi.org/10.1590/0101-7438.2018.038.03.0389
http://hdl.handle.net/11449/188657
identifier_str_mv Pesquisa Operacional, v. 38, n. 3, p. 389-411, 2018.
1678-5142
0101-7438
10.1590/0101-7438.2018.038.03.0389
S0101-74382018000300389
2-s2.0-85060399899
S0101-74382018000300389.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pesquisa Operacional
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 389-411
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484724377059328