Genetic algorithm for optimization of the aedes aegypti control strategies
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1590/0101-7438.2018.038.03.0389 http://hdl.handle.net/11449/188657 |
Summary: | Dengue Fever, Zika and Chikungunya are febrile infectious diseases transmitted by the Aedes species of mosquito with a high rate of mortality. The most common vector is Aedes aegypti. According to World Health Organization outbreaks of mosquito-borne illnesses are common in the tropical and subtropical climates, as there are currently no vaccines to protect against Dengue Fever, Chikungunya or Zika diseases. Hence, mosquito control is the only known method to protect human populations. Consequently, the affected countries need urgently search for better tools and sustained control interventions in order to stop the growing spread of the vector. This study presents an optimization model, involving chemical, biological and physical control decisions that can be applied to fight against the Aedes mosquito. To determine solutions for the optimization problem a genetic heuristic is proposed. Through the computational experiments, the algorithm shows considerable efficiency in achieving solutions that can support decision makers in controlling the mosquito population. |
id |
UNSP_ca1f6cd5138cfe4a2c27f14bb57ca088 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/188657 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Genetic algorithm for optimization of the aedes aegypti control strategiesGenetic algorithmsHealthcare operational researchOptimization modelsDengue Fever, Zika and Chikungunya are febrile infectious diseases transmitted by the Aedes species of mosquito with a high rate of mortality. The most common vector is Aedes aegypti. According to World Health Organization outbreaks of mosquito-borne illnesses are common in the tropical and subtropical climates, as there are currently no vaccines to protect against Dengue Fever, Chikungunya or Zika diseases. Hence, mosquito control is the only known method to protect human populations. Consequently, the affected countries need urgently search for better tools and sustained control interventions in order to stop the growing spread of the vector. This study presents an optimization model, involving chemical, biological and physical control decisions that can be applied to fight against the Aedes mosquito. To determine solutions for the optimization problem a genetic heuristic is proposed. Through the computational experiments, the algorithm shows considerable efficiency in achieving solutions that can support decision makers in controlling the mosquito population.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para a Ciência e a TecnologiaUniversidade Estadual PaulistaDepartamento de Bioestatística – IB UNESP, Bairro Rubião JúniorDepartamento de Matemática – FC UNESPISEG and CMAFCIO Universidade de LisboaCentre for Operational Research and Logistics University of PortsmouthDepartment of Mathematics University of PortsmouthDepartamento de Bioestatística – IB UNESP, Bairro Rubião JúniorDepartamento de Matemática – FC UNESPFUNDUNESP: 0351/019/13FAPESP: 2009/14901-4FAPESP: 2009/15098-0FAPESP: 2010/07585-6FAPESP: 2014/01604-0CNPq: 302454/2016-0Universidade Estadual Paulista (Unesp)Universidade de LisboaUniversity of PortsmouthFlorentino, Helenice O. [UNESP]Cantane, Daniela R. [UNESP]Santos, Fernando L.P. [UNESP]Reis, Célia A. [UNESP]Pato, Margarida V.Jones, DylanCerasuolo, MariannaOliveira, Rogério A. [UNESP]Lyra, Luiz G. [UNESP]2019-10-06T16:15:02Z2019-10-06T16:15:02Z2018-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article389-411application/pdfhttp://dx.doi.org/10.1590/0101-7438.2018.038.03.0389Pesquisa Operacional, v. 38, n. 3, p. 389-411, 2018.1678-51420101-7438http://hdl.handle.net/11449/18865710.1590/0101-7438.2018.038.03.0389S0101-743820180003003892-s2.0-85060399899S0101-74382018000300389.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPesquisa Operacionalinfo:eu-repo/semantics/openAccess2024-10-08T14:59:01Zoai:repositorio.unesp.br:11449/188657Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-10-08T14:59:01Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Genetic algorithm for optimization of the aedes aegypti control strategies |
title |
Genetic algorithm for optimization of the aedes aegypti control strategies |
spellingShingle |
Genetic algorithm for optimization of the aedes aegypti control strategies Florentino, Helenice O. [UNESP] Genetic algorithms Healthcare operational research Optimization models |
title_short |
Genetic algorithm for optimization of the aedes aegypti control strategies |
title_full |
Genetic algorithm for optimization of the aedes aegypti control strategies |
title_fullStr |
Genetic algorithm for optimization of the aedes aegypti control strategies |
title_full_unstemmed |
Genetic algorithm for optimization of the aedes aegypti control strategies |
title_sort |
Genetic algorithm for optimization of the aedes aegypti control strategies |
author |
Florentino, Helenice O. [UNESP] |
author_facet |
Florentino, Helenice O. [UNESP] Cantane, Daniela R. [UNESP] Santos, Fernando L.P. [UNESP] Reis, Célia A. [UNESP] Pato, Margarida V. Jones, Dylan Cerasuolo, Marianna Oliveira, Rogério A. [UNESP] Lyra, Luiz G. [UNESP] |
author_role |
author |
author2 |
Cantane, Daniela R. [UNESP] Santos, Fernando L.P. [UNESP] Reis, Célia A. [UNESP] Pato, Margarida V. Jones, Dylan Cerasuolo, Marianna Oliveira, Rogério A. [UNESP] Lyra, Luiz G. [UNESP] |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade de Lisboa University of Portsmouth |
dc.contributor.author.fl_str_mv |
Florentino, Helenice O. [UNESP] Cantane, Daniela R. [UNESP] Santos, Fernando L.P. [UNESP] Reis, Célia A. [UNESP] Pato, Margarida V. Jones, Dylan Cerasuolo, Marianna Oliveira, Rogério A. [UNESP] Lyra, Luiz G. [UNESP] |
dc.subject.por.fl_str_mv |
Genetic algorithms Healthcare operational research Optimization models |
topic |
Genetic algorithms Healthcare operational research Optimization models |
description |
Dengue Fever, Zika and Chikungunya are febrile infectious diseases transmitted by the Aedes species of mosquito with a high rate of mortality. The most common vector is Aedes aegypti. According to World Health Organization outbreaks of mosquito-borne illnesses are common in the tropical and subtropical climates, as there are currently no vaccines to protect against Dengue Fever, Chikungunya or Zika diseases. Hence, mosquito control is the only known method to protect human populations. Consequently, the affected countries need urgently search for better tools and sustained control interventions in order to stop the growing spread of the vector. This study presents an optimization model, involving chemical, biological and physical control decisions that can be applied to fight against the Aedes mosquito. To determine solutions for the optimization problem a genetic heuristic is proposed. Through the computational experiments, the algorithm shows considerable efficiency in achieving solutions that can support decision makers in controlling the mosquito population. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 2019-10-06T16:15:02Z 2019-10-06T16:15:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/0101-7438.2018.038.03.0389 Pesquisa Operacional, v. 38, n. 3, p. 389-411, 2018. 1678-5142 0101-7438 http://hdl.handle.net/11449/188657 10.1590/0101-7438.2018.038.03.0389 S0101-74382018000300389 2-s2.0-85060399899 S0101-74382018000300389.pdf |
url |
http://dx.doi.org/10.1590/0101-7438.2018.038.03.0389 http://hdl.handle.net/11449/188657 |
identifier_str_mv |
Pesquisa Operacional, v. 38, n. 3, p. 389-411, 2018. 1678-5142 0101-7438 10.1590/0101-7438.2018.038.03.0389 S0101-74382018000300389 2-s2.0-85060399899 S0101-74382018000300389.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pesquisa Operacional |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
389-411 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484724377059328 |