Polynomial slow-fast systems on the Poincaré–Lyapunov sphere
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/s40863-024-00441-8 https://hdl.handle.net/11449/299973 |
Summary: | The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincaré–Lyapunov sphere for slow-fast systems defined in Rn. For the planar case, we prove a global version of the Fenichel Theorem, which assures the persistence of invariant manifolds in the whole Poincaré–Lyapunov disk. We also discuss the occurrence of non normally hyperbolic points at infinity, namely: fold, transcritical and pitchfork singularities. |
id |
UNSP_c57cbe6ffeef1f9e6fa8211bf926e43a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/299973 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphereGeometric singular perturbation theoryInvariant manifoldsPoincaré compactificationPoincaré–Lyapunov compactificationPolynomial vector fieldsThe main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincaré–Lyapunov sphere for slow-fast systems defined in Rn. For the planar case, we prove a global version of the Fenichel Theorem, which assures the persistence of invariant manifolds in the whole Poincaré–Lyapunov disk. We also discuss the occurrence of non normally hyperbolic points at infinity, namely: fold, transcritical and pitchfork singularities.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Agence Nationale de la RechercheInstitute of Mathematics and Computer Science University of São Paulo (USP), Avenida Trabalhador São Carlense, 400Institute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP), Rua C. Colombo, 2265Institute of Biosciences Humanities and Exact Sciences São Paulo State University (UNESP), Rua C. Colombo, 2265FAPESP: 2019/10269-3FAPESP: 2021/10198-9CAPES: 2023/02959-5CNPq: 302154/2022-1CAPES: 88881.310741/2018-01CAPES: 88887.310463/2018-00Agence Nationale de la Recherche: ANR-23-CE40-0028Universidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Perez, Otavio HenriqueSilva, Paulo Ricardo da [UNESP]2025-04-29T18:48:17Z2024-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1527-1552http://dx.doi.org/10.1007/s40863-024-00441-8Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1527-1552, 2024.2316-90281982-6907https://hdl.handle.net/11449/29997310.1007/s40863-024-00441-82-s2.0-85196720355Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSao Paulo Journal of Mathematical Sciencesinfo:eu-repo/semantics/openAccess2025-04-30T13:42:10Zoai:repositorio.unesp.br:11449/299973Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:42:10Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
title |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
spellingShingle |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere Perez, Otavio Henrique Geometric singular perturbation theory Invariant manifolds Poincaré compactification Poincaré–Lyapunov compactification Polynomial vector fields |
title_short |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
title_full |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
title_fullStr |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
title_full_unstemmed |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
title_sort |
Polynomial slow-fast systems on the Poincaré–Lyapunov sphere |
author |
Perez, Otavio Henrique |
author_facet |
Perez, Otavio Henrique Silva, Paulo Ricardo da [UNESP] |
author_role |
author |
author2 |
Silva, Paulo Ricardo da [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Perez, Otavio Henrique Silva, Paulo Ricardo da [UNESP] |
dc.subject.por.fl_str_mv |
Geometric singular perturbation theory Invariant manifolds Poincaré compactification Poincaré–Lyapunov compactification Polynomial vector fields |
topic |
Geometric singular perturbation theory Invariant manifolds Poincaré compactification Poincaré–Lyapunov compactification Polynomial vector fields |
description |
The main goal of this paper is to study compactifications of polynomial slow-fast systems. More precisely, the aim is to give conditions in order to guarantee normal hyperbolicity at infinity of the Poincaré–Lyapunov sphere for slow-fast systems defined in Rn. For the planar case, we prove a global version of the Fenichel Theorem, which assures the persistence of invariant manifolds in the whole Poincaré–Lyapunov disk. We also discuss the occurrence of non normally hyperbolic points at infinity, namely: fold, transcritical and pitchfork singularities. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-12-01 2025-04-29T18:48:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s40863-024-00441-8 Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1527-1552, 2024. 2316-9028 1982-6907 https://hdl.handle.net/11449/299973 10.1007/s40863-024-00441-8 2-s2.0-85196720355 |
url |
http://dx.doi.org/10.1007/s40863-024-00441-8 https://hdl.handle.net/11449/299973 |
identifier_str_mv |
Sao Paulo Journal of Mathematical Sciences, v. 18, n. 2, p. 1527-1552, 2024. 2316-9028 1982-6907 10.1007/s40863-024-00441-8 2-s2.0-85196720355 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Sao Paulo Journal of Mathematical Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1527-1552 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482530692104192 |