Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay
Autor(a) principal: | |
---|---|
Data de Publicação: | 2024 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1002/slct.202403587 https://hdl.handle.net/11449/304427 |
Resumo: | Reduced graphene oxide (rGO) and tin dioxide (SnO2) form composites in a wide range of SnO2/rGO proportions, which are deposited as thin films on borosilicate glass and silica substrates. The rGO proportion affects the SnO2 optical properties and the sample surface, as observed by optical transmittance and confocal and scanning electron microscopies images, mainly for high proportion of rGO. For low proportion, the presence of small surface islands may contribute to optical confinement. The evaluated bandgap is basically from the SnO2 matrix unless the presence of rGO affects the optical absorption edge. Monochromatic ultraviolet light from a He–Cd laser (325 nm) irradiating on the composite film increases the conductivity, giving rise to the phenomenon of persistent photoconductivity (PPC), even very close to room temperature. Modeling by considering mainly the SnO2/rGO interface barrier for electron transport, yield an interface energy barrier of 250 meV. The strong response to ultraviolet light and the phenomenon of PPC indicates potential application in amplifiers, which could be adjusted by doping with rare-earth ions, such as Er3+ in the SnO2 matrix. |
id |
UNSP_c4c86adf30e9f3ab97b3e845c5b571ae |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/304427 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity DecayCompositeReduced graphene oxideThin filmsTin dioxideReduced graphene oxide (rGO) and tin dioxide (SnO2) form composites in a wide range of SnO2/rGO proportions, which are deposited as thin films on borosilicate glass and silica substrates. The rGO proportion affects the SnO2 optical properties and the sample surface, as observed by optical transmittance and confocal and scanning electron microscopies images, mainly for high proportion of rGO. For low proportion, the presence of small surface islands may contribute to optical confinement. The evaluated bandgap is basically from the SnO2 matrix unless the presence of rGO affects the optical absorption edge. Monochromatic ultraviolet light from a He–Cd laser (325 nm) irradiating on the composite film increases the conductivity, giving rise to the phenomenon of persistent photoconductivity (PPC), even very close to room temperature. Modeling by considering mainly the SnO2/rGO interface barrier for electron transport, yield an interface energy barrier of 250 meV. The strong response to ultraviolet light and the phenomenon of PPC indicates potential application in amplifiers, which could be adjusted by doping with rare-earth ions, such as Er3+ in the SnO2 matrix.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Lab of Electro-Optical Experiments on Materials Physics and Meteorology Department-FC and POSMAT São Paulo State University, CP: 369, São PauloChemistry Department-FC São Paulo State University, CP: 369, São PauloLab of Electro-Optical Experiments on Materials Physics and Meteorology Department-FC and POSMAT São Paulo State University, CP: 369, São PauloChemistry Department-FC São Paulo State University, CP: 369, São PauloFAPESP: 2022/12998-5and2022/08483-0.CNPq: 303388/2022-6Universidade Estadual Paulista (UNESP)de Almeida, André Luis [UNESP]Fonseca, Lucas Prado [UNESP]de Oliveira, Natália Carli [UNESP]Martins, Lucas Michelão [UNESP]Bueno, Cristina de Freitas [UNESP]Scalvi, Luis Vicente de Andrade [UNESP]2025-04-29T19:34:53Z2024-10-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1002/slct.202403587ChemistrySelect, v. 9, n. 39, 2024.2365-6549https://hdl.handle.net/11449/30442710.1002/slct.2024035872-s2.0-85206834449Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChemistrySelectinfo:eu-repo/semantics/openAccess2025-04-30T13:52:47Zoai:repositorio.unesp.br:11449/304427Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:52:47Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
title |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
spellingShingle |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay de Almeida, André Luis [UNESP] Composite Reduced graphene oxide Thin films Tin dioxide |
title_short |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
title_full |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
title_fullStr |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
title_full_unstemmed |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
title_sort |
Properties of Thin Film Composites of rGO–SnO2 and Modeling of Ultraviolet Laser-Induced Conductivity Decay |
author |
de Almeida, André Luis [UNESP] |
author_facet |
de Almeida, André Luis [UNESP] Fonseca, Lucas Prado [UNESP] de Oliveira, Natália Carli [UNESP] Martins, Lucas Michelão [UNESP] Bueno, Cristina de Freitas [UNESP] Scalvi, Luis Vicente de Andrade [UNESP] |
author_role |
author |
author2 |
Fonseca, Lucas Prado [UNESP] de Oliveira, Natália Carli [UNESP] Martins, Lucas Michelão [UNESP] Bueno, Cristina de Freitas [UNESP] Scalvi, Luis Vicente de Andrade [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
de Almeida, André Luis [UNESP] Fonseca, Lucas Prado [UNESP] de Oliveira, Natália Carli [UNESP] Martins, Lucas Michelão [UNESP] Bueno, Cristina de Freitas [UNESP] Scalvi, Luis Vicente de Andrade [UNESP] |
dc.subject.por.fl_str_mv |
Composite Reduced graphene oxide Thin films Tin dioxide |
topic |
Composite Reduced graphene oxide Thin films Tin dioxide |
description |
Reduced graphene oxide (rGO) and tin dioxide (SnO2) form composites in a wide range of SnO2/rGO proportions, which are deposited as thin films on borosilicate glass and silica substrates. The rGO proportion affects the SnO2 optical properties and the sample surface, as observed by optical transmittance and confocal and scanning electron microscopies images, mainly for high proportion of rGO. For low proportion, the presence of small surface islands may contribute to optical confinement. The evaluated bandgap is basically from the SnO2 matrix unless the presence of rGO affects the optical absorption edge. Monochromatic ultraviolet light from a He–Cd laser (325 nm) irradiating on the composite film increases the conductivity, giving rise to the phenomenon of persistent photoconductivity (PPC), even very close to room temperature. Modeling by considering mainly the SnO2/rGO interface barrier for electron transport, yield an interface energy barrier of 250 meV. The strong response to ultraviolet light and the phenomenon of PPC indicates potential application in amplifiers, which could be adjusted by doping with rare-earth ions, such as Er3+ in the SnO2 matrix. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-10-18 2025-04-29T19:34:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1002/slct.202403587 ChemistrySelect, v. 9, n. 39, 2024. 2365-6549 https://hdl.handle.net/11449/304427 10.1002/slct.202403587 2-s2.0-85206834449 |
url |
http://dx.doi.org/10.1002/slct.202403587 https://hdl.handle.net/11449/304427 |
identifier_str_mv |
ChemistrySelect, v. 9, n. 39, 2024. 2365-6549 10.1002/slct.202403587 2-s2.0-85206834449 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ChemistrySelect |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482501373919232 |