Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.13069/jacodesmath.v11i2.207 https://hdl.handle.net/11449/308167 |
Summary: | A classification of all totally real subfields K of cyclotomic fields Q(ξ2r), for any r ≥ 4, and the fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for their minimum product distance. Any totally real subfield K of Q(ξ2r) must be of the form K = Q(ξ2s +ξ−1 2s), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications) can be carved out of those lattices. |
id |
UNSP_b7ca5f19f1ee8653a86ebd560b2c87dc |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/308167 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set designAlgebraic latticesCyclotomic fieldsMinimum product distanceSignal designA classification of all totally real subfields K of cyclotomic fields Q(ξ2r), for any r ≥ 4, and the fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for their minimum product distance. Any totally real subfield K of Q(ξ2r) must be of the form K = Q(ξ2s +ξ−1 2s), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications) can be carved out of those lattices.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Mathematics São Paulo State University, SPDepartment of Mathematics & Statistics San Diego State UniversityDepartment of Mathematics São Paulo State University, SPFAPESP: 2013/25977-7CNPq: 429346/2018-2Universidade Estadual Paulista (UNESP)San Diego State UniversityFerrari, Agnaldo J. [UNESP]de Andrade, Antonio A. [UNESP]Interlando, José C.Alves, Carina [UNESP]2025-04-29T20:11:26Z2024-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article73-81http://dx.doi.org/10.13069/jacodesmath.v11i2.207Journal of Algebra Combinatorics Discrete Structures and Applications, v. 11, n. 2, p. 73-81, 2024.2148-838Xhttps://hdl.handle.net/11449/30816710.13069/jacodesmath.v11i2.2072-s2.0-85195109849Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Algebra Combinatorics Discrete Structures and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T14:39:16Zoai:repositorio.unesp.br:11449/308167Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:39:16Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
title |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
spellingShingle |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design Ferrari, Agnaldo J. [UNESP] Algebraic lattices Cyclotomic fields Minimum product distance Signal design |
title_short |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
title_full |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
title_fullStr |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
title_full_unstemmed |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
title_sort |
Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design |
author |
Ferrari, Agnaldo J. [UNESP] |
author_facet |
Ferrari, Agnaldo J. [UNESP] de Andrade, Antonio A. [UNESP] Interlando, José C. Alves, Carina [UNESP] |
author_role |
author |
author2 |
de Andrade, Antonio A. [UNESP] Interlando, José C. Alves, Carina [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) San Diego State University |
dc.contributor.author.fl_str_mv |
Ferrari, Agnaldo J. [UNESP] de Andrade, Antonio A. [UNESP] Interlando, José C. Alves, Carina [UNESP] |
dc.subject.por.fl_str_mv |
Algebraic lattices Cyclotomic fields Minimum product distance Signal design |
topic |
Algebraic lattices Cyclotomic fields Minimum product distance Signal design |
description |
A classification of all totally real subfields K of cyclotomic fields Q(ξ2r), for any r ≥ 4, and the fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for their minimum product distance. Any totally real subfield K of Q(ξ2r) must be of the form K = Q(ξ2s +ξ−1 2s), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications) can be carved out of those lattices. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-05-21 2025-04-29T20:11:26Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.13069/jacodesmath.v11i2.207 Journal of Algebra Combinatorics Discrete Structures and Applications, v. 11, n. 2, p. 73-81, 2024. 2148-838X https://hdl.handle.net/11449/308167 10.13069/jacodesmath.v11i2.207 2-s2.0-85195109849 |
url |
http://dx.doi.org/10.13069/jacodesmath.v11i2.207 https://hdl.handle.net/11449/308167 |
identifier_str_mv |
Journal of Algebra Combinatorics Discrete Structures and Applications, v. 11, n. 2, p. 73-81, 2024. 2148-838X 10.13069/jacodesmath.v11i2.207 2-s2.0-85195109849 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Algebra Combinatorics Discrete Structures and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
73-81 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482667410685952 |