Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design

Bibliographic Details
Main Author: Ferrari, Agnaldo J. [UNESP]
Publication Date: 2024
Other Authors: de Andrade, Antonio A. [UNESP], Interlando, José C., Alves, Carina [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.13069/jacodesmath.v11i2.207
https://hdl.handle.net/11449/308167
Summary: A classification of all totally real subfields K of cyclotomic fields Q(ξ2r), for any r ≥ 4, and the fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for their minimum product distance. Any totally real subfield K of Q(ξ2r) must be of the form K = Q(ξ2s +ξ−1 2s), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications) can be carved out of those lattices.
id UNSP_b7ca5f19f1ee8653a86ebd560b2c87dc
oai_identifier_str oai:repositorio.unesp.br:11449/308167
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set designAlgebraic latticesCyclotomic fieldsMinimum product distanceSignal designA classification of all totally real subfields K of cyclotomic fields Q(ξ2r), for any r ≥ 4, and the fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for their minimum product distance. Any totally real subfield K of Q(ξ2r) must be of the form K = Q(ξ2s +ξ−1 2s), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications) can be carved out of those lattices.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Mathematics São Paulo State University, SPDepartment of Mathematics & Statistics San Diego State UniversityDepartment of Mathematics São Paulo State University, SPFAPESP: 2013/25977-7CNPq: 429346/2018-2Universidade Estadual Paulista (UNESP)San Diego State UniversityFerrari, Agnaldo J. [UNESP]de Andrade, Antonio A. [UNESP]Interlando, José C.Alves, Carina [UNESP]2025-04-29T20:11:26Z2024-05-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article73-81http://dx.doi.org/10.13069/jacodesmath.v11i2.207Journal of Algebra Combinatorics Discrete Structures and Applications, v. 11, n. 2, p. 73-81, 2024.2148-838Xhttps://hdl.handle.net/11449/30816710.13069/jacodesmath.v11i2.2072-s2.0-85195109849Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Algebra Combinatorics Discrete Structures and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T14:39:16Zoai:repositorio.unesp.br:11449/308167Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:39:16Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
title Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
spellingShingle Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
Ferrari, Agnaldo J. [UNESP]
Algebraic lattices
Cyclotomic fields
Minimum product distance
Signal design
title_short Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
title_full Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
title_fullStr Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
title_full_unstemmed Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
title_sort Characterization of totally real subfields of 2-power cyclotomic fields and applications to signal set design
author Ferrari, Agnaldo J. [UNESP]
author_facet Ferrari, Agnaldo J. [UNESP]
de Andrade, Antonio A. [UNESP]
Interlando, José C.
Alves, Carina [UNESP]
author_role author
author2 de Andrade, Antonio A. [UNESP]
Interlando, José C.
Alves, Carina [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
San Diego State University
dc.contributor.author.fl_str_mv Ferrari, Agnaldo J. [UNESP]
de Andrade, Antonio A. [UNESP]
Interlando, José C.
Alves, Carina [UNESP]
dc.subject.por.fl_str_mv Algebraic lattices
Cyclotomic fields
Minimum product distance
Signal design
topic Algebraic lattices
Cyclotomic fields
Minimum product distance
Signal design
description A classification of all totally real subfields K of cyclotomic fields Q(ξ2r), for any r ≥ 4, and the fully-diverse related versions of the Zn-lattice are presented along with closed-form expressions for their minimum product distance. Any totally real subfield K of Q(ξ2r) must be of the form K = Q(ξ2s +ξ−1 2s), where s = r−j for some 0 ≤ j ≤ r−3. Signal constellations for transmitting information over both Gaussian and Rayleigh fading channels (which can be useful for mobile communications) can be carved out of those lattices.
publishDate 2024
dc.date.none.fl_str_mv 2024-05-21
2025-04-29T20:11:26Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.13069/jacodesmath.v11i2.207
Journal of Algebra Combinatorics Discrete Structures and Applications, v. 11, n. 2, p. 73-81, 2024.
2148-838X
https://hdl.handle.net/11449/308167
10.13069/jacodesmath.v11i2.207
2-s2.0-85195109849
url http://dx.doi.org/10.13069/jacodesmath.v11i2.207
https://hdl.handle.net/11449/308167
identifier_str_mv Journal of Algebra Combinatorics Discrete Structures and Applications, v. 11, n. 2, p. 73-81, 2024.
2148-838X
10.13069/jacodesmath.v11i2.207
2-s2.0-85195109849
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Algebra Combinatorics Discrete Structures and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 73-81
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482667410685952