Equivariant characteristic classes of singular hypersurfaces
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1142/S0129167X24500782 https://hdl.handle.net/11449/303649 |
Summary: | In this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes. |
id |
UNSP_b7a46ffd706d3ae968b814d4452f59b2 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/303649 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Equivariant characteristic classes of singular hypersurfacesEquivariant characteristic classesMilnor numbersingular hypersurfacesIn this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes.Departamento de Matemática Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo (USP), Av. Trabalhador São Carlense, 400 - Centro- SPDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), R. Cristóvão Colombo 2265 - Jardim Nazareth- SPDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), R. Cristóvão Colombo 2265 - Jardim Nazareth- SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Grulha, N. G.Monteiro, A.Morgado, M. F.Z. [UNESP]2025-04-29T19:30:22Z2025-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0129167X24500782International Journal of Mathematics, v. 36, n. 3, 2025.1793-65190129-167Xhttps://hdl.handle.net/11449/30364910.1142/S0129167X245007822-s2.0-85213355984Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Mathematicsinfo:eu-repo/semantics/openAccess2025-04-30T14:09:39Zoai:repositorio.unesp.br:11449/303649Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:09:39Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Equivariant characteristic classes of singular hypersurfaces |
title |
Equivariant characteristic classes of singular hypersurfaces |
spellingShingle |
Equivariant characteristic classes of singular hypersurfaces Grulha, N. G. Equivariant characteristic classes Milnor number singular hypersurfaces |
title_short |
Equivariant characteristic classes of singular hypersurfaces |
title_full |
Equivariant characteristic classes of singular hypersurfaces |
title_fullStr |
Equivariant characteristic classes of singular hypersurfaces |
title_full_unstemmed |
Equivariant characteristic classes of singular hypersurfaces |
title_sort |
Equivariant characteristic classes of singular hypersurfaces |
author |
Grulha, N. G. |
author_facet |
Grulha, N. G. Monteiro, A. Morgado, M. F.Z. [UNESP] |
author_role |
author |
author2 |
Monteiro, A. Morgado, M. F.Z. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Grulha, N. G. Monteiro, A. Morgado, M. F.Z. [UNESP] |
dc.subject.por.fl_str_mv |
Equivariant characteristic classes Milnor number singular hypersurfaces |
topic |
Equivariant characteristic classes Milnor number singular hypersurfaces |
description |
In this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04-29T19:30:22Z 2025-03-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1142/S0129167X24500782 International Journal of Mathematics, v. 36, n. 3, 2025. 1793-6519 0129-167X https://hdl.handle.net/11449/303649 10.1142/S0129167X24500782 2-s2.0-85213355984 |
url |
http://dx.doi.org/10.1142/S0129167X24500782 https://hdl.handle.net/11449/303649 |
identifier_str_mv |
International Journal of Mathematics, v. 36, n. 3, 2025. 1793-6519 0129-167X 10.1142/S0129167X24500782 2-s2.0-85213355984 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Mathematics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482588451864576 |