Equivariant characteristic classes of singular hypersurfaces

Bibliographic Details
Main Author: Grulha, N. G.
Publication Date: 2025
Other Authors: Monteiro, A., Morgado, M. F.Z. [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1142/S0129167X24500782
https://hdl.handle.net/11449/303649
Summary: In this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes.
id UNSP_b7a46ffd706d3ae968b814d4452f59b2
oai_identifier_str oai:repositorio.unesp.br:11449/303649
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Equivariant characteristic classes of singular hypersurfacesEquivariant characteristic classesMilnor numbersingular hypersurfacesIn this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes.Departamento de Matemática Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo (USP), Av. Trabalhador São Carlense, 400 - Centro- SPDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), R. Cristóvão Colombo 2265 - Jardim Nazareth- SPDepartamento de Matemática Instituto de Biociências Letras e Ciências Exatas Universidade Estadual Paulista (UNESP), R. Cristóvão Colombo 2265 - Jardim Nazareth- SPUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Grulha, N. G.Monteiro, A.Morgado, M. F.Z. [UNESP]2025-04-29T19:30:22Z2025-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0129167X24500782International Journal of Mathematics, v. 36, n. 3, 2025.1793-65190129-167Xhttps://hdl.handle.net/11449/30364910.1142/S0129167X245007822-s2.0-85213355984Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Mathematicsinfo:eu-repo/semantics/openAccess2025-04-30T14:09:39Zoai:repositorio.unesp.br:11449/303649Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:09:39Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Equivariant characteristic classes of singular hypersurfaces
title Equivariant characteristic classes of singular hypersurfaces
spellingShingle Equivariant characteristic classes of singular hypersurfaces
Grulha, N. G.
Equivariant characteristic classes
Milnor number
singular hypersurfaces
title_short Equivariant characteristic classes of singular hypersurfaces
title_full Equivariant characteristic classes of singular hypersurfaces
title_fullStr Equivariant characteristic classes of singular hypersurfaces
title_full_unstemmed Equivariant characteristic classes of singular hypersurfaces
title_sort Equivariant characteristic classes of singular hypersurfaces
author Grulha, N. G.
author_facet Grulha, N. G.
Monteiro, A.
Morgado, M. F.Z. [UNESP]
author_role author
author2 Monteiro, A.
Morgado, M. F.Z. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Grulha, N. G.
Monteiro, A.
Morgado, M. F.Z. [UNESP]
dc.subject.por.fl_str_mv Equivariant characteristic classes
Milnor number
singular hypersurfaces
topic Equivariant characteristic classes
Milnor number
singular hypersurfaces
description In this paper, we introduce definitions for the integrated equivariant Milnor number μIG and the equivariant Milnor class ℳG(Z), for singular hypersurfaces. We prove that the μIG are constant on the strata in a Whitney stratification of Z, along with the correlation ℳG(Z) = ℳG,0(Z) = 1 |G|Σi=1kμ IG(x i) for hypersurfaces hosting isolated singularities x1,...,xk, where ℳG,0(Z) denotes the 0th equivariant Milnor class of Z. We also introduce the equivariant Fulton-Johnson class of singular hypersurfaces. We give an equivariant version of Verdier's specialization morphism in homology, and also for constructible functions. This is used for finding a relation between equivariant Fulton-Johnson and Schwartz-MacPherson classes.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-29T19:30:22Z
2025-03-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1142/S0129167X24500782
International Journal of Mathematics, v. 36, n. 3, 2025.
1793-6519
0129-167X
https://hdl.handle.net/11449/303649
10.1142/S0129167X24500782
2-s2.0-85213355984
url http://dx.doi.org/10.1142/S0129167X24500782
https://hdl.handle.net/11449/303649
identifier_str_mv International Journal of Mathematics, v. 36, n. 3, 2025.
1793-6519
0129-167X
10.1142/S0129167X24500782
2-s2.0-85213355984
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Mathematics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482588451864576