Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1007/s11042-023-16351-4 https://hdl.handle.net/11449/297828 |
Summary: | The use of a convolutional neural network with transfer learning is a strategy that defines high-level features, commonly explored to study patterns in medical images. These features can be analyzed via different methods in order to design hybrid models with more useful and accurate solutions for clinical practice. In this paper, a computational scheme is presented to define hybrid models through deep features by transfer learning, selection by ranking and a robust ensemble classifier with five algorithms. The obtained models were applied to classify histological images from breast, colorectal and liver tissue. The strategy developed here allows knowing important results and conditions to improve models of computer-aided diagnosis, even exploring classic CNN models. The features were defined using layers from the AlexNet and ResNet-50 architectures. The attributes were organized into subsets of the most relevant features and submitted to a k-fold cross-validation process. The best hybrid models were obtained with deep features from the ResNet-50 network, using distinct layers (activation_48_relu and avg_pool) and a maximum of 35 descriptors. These hybrid models provided 98.00% and 99.32% of accuracy values, with emphasis on histological images of breast cancer, indicating the best solution among those available in the specialized Literature. Also, these models provided more relevant results for classifying UCSB and LG datasets than regularized techniques and CNN architectures, exploring data augmentation or not. The computational scheme with detailed information regarding the main hybrid models is a relevant contribution to the community interested in the study of machine learning techniques for pattern recognition. |
id |
UNSP_b5c29ce3aecac9290c7dd5441af16a4a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/297828 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifierDeep featuresHistological imagesHybrid modelsPattern recognitionTransfer learningThe use of a convolutional neural network with transfer learning is a strategy that defines high-level features, commonly explored to study patterns in medical images. These features can be analyzed via different methods in order to design hybrid models with more useful and accurate solutions for clinical practice. In this paper, a computational scheme is presented to define hybrid models through deep features by transfer learning, selection by ranking and a robust ensemble classifier with five algorithms. The obtained models were applied to classify histological images from breast, colorectal and liver tissue. The strategy developed here allows knowing important results and conditions to improve models of computer-aided diagnosis, even exploring classic CNN models. The features were defined using layers from the AlexNet and ResNet-50 architectures. The attributes were organized into subsets of the most relevant features and submitted to a k-fold cross-validation process. The best hybrid models were obtained with deep features from the ResNet-50 network, using distinct layers (activation_48_relu and avg_pool) and a maximum of 35 descriptors. These hybrid models provided 98.00% and 99.32% of accuracy values, with emphasis on histological images of breast cancer, indicating the best solution among those available in the specialized Literature. Also, these models provided more relevant results for classifying UCSB and LG datasets than regularized techniques and CNN architectures, exploring data augmentation or not. The computational scheme with detailed information regarding the main hybrid models is a relevant contribution to the community interested in the study of machine learning techniques for pattern recognition.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Department of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São PauloFaculty of Computer Science (FACOM) - Federal University of Uberlândia (UFU), Avenida João Neves de Ávila 2121, Bl.B, Minas GeraisScience and Technology Institute (ICT) Federal University of São Paulo (UNIFESP), Avenida Cesare Mansueto Giulio Lattes, 1201, São PauloFederal Institute of Triângulo Mineiro (IFTM), Rua Belarmino Vilela Junqueira sn, Minas GeraisDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São PauloCNPq: #132940/2019-1CNPq: #313643/2021-0FAPESP: 2022/03020-1CNPq: 311404/2021-9FAPEMIG: APQ-00578-18CAPES: Finance Code 001Universidade Estadual Paulista (UNESP)Universidade Federal de Uberlândia (UFU)Universidade de São Paulo (USP)Federal Institute of Triângulo Mineiro (IFTM)de Oliveira, Cléber I. [UNESP]do Nascimento, Marcelo Z.Roberto, Guilherme F.Tosta, Thaína A. A.Martins, Alessandro S.Neves, Leandro A. [UNESP]2025-04-29T18:07:50Z2024-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article21929-21952http://dx.doi.org/10.1007/s11042-023-16351-4Multimedia Tools and Applications, v. 83, n. 8, p. 21929-21952, 2024.1573-77211380-7501https://hdl.handle.net/11449/29782810.1007/s11042-023-16351-42-s2.0-85167328159Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengMultimedia Tools and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T13:53:14Zoai:repositorio.unesp.br:11449/297828Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:53:14Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
title |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
spellingShingle |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier de Oliveira, Cléber I. [UNESP] Deep features Histological images Hybrid models Pattern recognition Transfer learning |
title_short |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
title_full |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
title_fullStr |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
title_full_unstemmed |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
title_sort |
Hybrid models for classifying histological images: An association of deep features by transfer learning with ensemble classifier |
author |
de Oliveira, Cléber I. [UNESP] |
author_facet |
de Oliveira, Cléber I. [UNESP] do Nascimento, Marcelo Z. Roberto, Guilherme F. Tosta, Thaína A. A. Martins, Alessandro S. Neves, Leandro A. [UNESP] |
author_role |
author |
author2 |
do Nascimento, Marcelo Z. Roberto, Guilherme F. Tosta, Thaína A. A. Martins, Alessandro S. Neves, Leandro A. [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Federal de Uberlândia (UFU) Universidade de São Paulo (USP) Federal Institute of Triângulo Mineiro (IFTM) |
dc.contributor.author.fl_str_mv |
de Oliveira, Cléber I. [UNESP] do Nascimento, Marcelo Z. Roberto, Guilherme F. Tosta, Thaína A. A. Martins, Alessandro S. Neves, Leandro A. [UNESP] |
dc.subject.por.fl_str_mv |
Deep features Histological images Hybrid models Pattern recognition Transfer learning |
topic |
Deep features Histological images Hybrid models Pattern recognition Transfer learning |
description |
The use of a convolutional neural network with transfer learning is a strategy that defines high-level features, commonly explored to study patterns in medical images. These features can be analyzed via different methods in order to design hybrid models with more useful and accurate solutions for clinical practice. In this paper, a computational scheme is presented to define hybrid models through deep features by transfer learning, selection by ranking and a robust ensemble classifier with five algorithms. The obtained models were applied to classify histological images from breast, colorectal and liver tissue. The strategy developed here allows knowing important results and conditions to improve models of computer-aided diagnosis, even exploring classic CNN models. The features were defined using layers from the AlexNet and ResNet-50 architectures. The attributes were organized into subsets of the most relevant features and submitted to a k-fold cross-validation process. The best hybrid models were obtained with deep features from the ResNet-50 network, using distinct layers (activation_48_relu and avg_pool) and a maximum of 35 descriptors. These hybrid models provided 98.00% and 99.32% of accuracy values, with emphasis on histological images of breast cancer, indicating the best solution among those available in the specialized Literature. Also, these models provided more relevant results for classifying UCSB and LG datasets than regularized techniques and CNN architectures, exploring data augmentation or not. The computational scheme with detailed information regarding the main hybrid models is a relevant contribution to the community interested in the study of machine learning techniques for pattern recognition. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-01 2025-04-29T18:07:50Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s11042-023-16351-4 Multimedia Tools and Applications, v. 83, n. 8, p. 21929-21952, 2024. 1573-7721 1380-7501 https://hdl.handle.net/11449/297828 10.1007/s11042-023-16351-4 2-s2.0-85167328159 |
url |
http://dx.doi.org/10.1007/s11042-023-16351-4 https://hdl.handle.net/11449/297828 |
identifier_str_mv |
Multimedia Tools and Applications, v. 83, n. 8, p. 21929-21952, 2024. 1573-7721 1380-7501 10.1007/s11042-023-16351-4 2-s2.0-85167328159 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Multimedia Tools and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
21929-21952 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482387821527040 |