EEG-based person identification through Binary Flower Pollination Algorithm
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1016/j.eswa.2016.06.006 http://hdl.handle.net/11449/161779 |
Summary: | Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person's head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. (C) 2016 Elsevier Ltd. All rights reserved. |
id |
UNSP_a7bf6ec469688f32f5730e6d3bb7c581 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161779 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
EEG-based person identification through Binary Flower Pollination AlgorithmMeta-heuristicPattern classificationBiometricsElectroencephalogramOptimum-path forestElectroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person's head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. (C) 2016 Elsevier Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ, Dept Comp, Bauru, BrazilUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilMiddlesex Univ, Sch Sci & Technol, London, EnglandSao Paulo State Univ, Dept Comp, Bauru, BrazilFAPESP: 2014/16250-9CNPq: 470571/2013-6CNPq: 306166/2014-3Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Middlesex UnivRodrigues, DouglasSilva, Gabriel F. A. [UNESP]Papa, Joao P. [UNESP]Marana, Aparecido N. [UNESP]Yang, Xin-She2018-11-26T16:48:35Z2018-11-26T16:48:35Z2016-11-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article81-90application/pdfhttp://dx.doi.org/10.1016/j.eswa.2016.06.006Expert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 62, p. 81-90, 2016.0957-4174http://hdl.handle.net/11449/16177910.1016/j.eswa.2016.06.006WOS:000380626000006WOS000380626000006.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengExpert Systems With Applications1,271info:eu-repo/semantics/openAccess2024-04-23T16:10:49Zoai:repositorio.unesp.br:11449/161779Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:10:49Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
EEG-based person identification through Binary Flower Pollination Algorithm |
title |
EEG-based person identification through Binary Flower Pollination Algorithm |
spellingShingle |
EEG-based person identification through Binary Flower Pollination Algorithm Rodrigues, Douglas Meta-heuristic Pattern classification Biometrics Electroencephalogram Optimum-path forest |
title_short |
EEG-based person identification through Binary Flower Pollination Algorithm |
title_full |
EEG-based person identification through Binary Flower Pollination Algorithm |
title_fullStr |
EEG-based person identification through Binary Flower Pollination Algorithm |
title_full_unstemmed |
EEG-based person identification through Binary Flower Pollination Algorithm |
title_sort |
EEG-based person identification through Binary Flower Pollination Algorithm |
author |
Rodrigues, Douglas |
author_facet |
Rodrigues, Douglas Silva, Gabriel F. A. [UNESP] Papa, Joao P. [UNESP] Marana, Aparecido N. [UNESP] Yang, Xin-She |
author_role |
author |
author2 |
Silva, Gabriel F. A. [UNESP] Papa, Joao P. [UNESP] Marana, Aparecido N. [UNESP] Yang, Xin-She |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal de São Carlos (UFSCar) Middlesex Univ |
dc.contributor.author.fl_str_mv |
Rodrigues, Douglas Silva, Gabriel F. A. [UNESP] Papa, Joao P. [UNESP] Marana, Aparecido N. [UNESP] Yang, Xin-She |
dc.subject.por.fl_str_mv |
Meta-heuristic Pattern classification Biometrics Electroencephalogram Optimum-path forest |
topic |
Meta-heuristic Pattern classification Biometrics Electroencephalogram Optimum-path forest |
description |
Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person's head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. (C) 2016 Elsevier Ltd. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11-15 2018-11-26T16:48:35Z 2018-11-26T16:48:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.eswa.2016.06.006 Expert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 62, p. 81-90, 2016. 0957-4174 http://hdl.handle.net/11449/161779 10.1016/j.eswa.2016.06.006 WOS:000380626000006 WOS000380626000006.pdf |
url |
http://dx.doi.org/10.1016/j.eswa.2016.06.006 http://hdl.handle.net/11449/161779 |
identifier_str_mv |
Expert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 62, p. 81-90, 2016. 0957-4174 10.1016/j.eswa.2016.06.006 WOS:000380626000006 WOS000380626000006.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Expert Systems With Applications 1,271 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
81-90 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483444544962560 |