Export Ready — 

EEG-based person identification through Binary Flower Pollination Algorithm

Bibliographic Details
Main Author: Rodrigues, Douglas
Publication Date: 2016
Other Authors: Silva, Gabriel F. A. [UNESP], Papa, Joao P. [UNESP], Marana, Aparecido N. [UNESP], Yang, Xin-She
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1016/j.eswa.2016.06.006
http://hdl.handle.net/11449/161779
Summary: Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person's head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. (C) 2016 Elsevier Ltd. All rights reserved.
id UNSP_a7bf6ec469688f32f5730e6d3bb7c581
oai_identifier_str oai:repositorio.unesp.br:11449/161779
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling EEG-based person identification through Binary Flower Pollination AlgorithmMeta-heuristicPattern classificationBiometricsElectroencephalogramOptimum-path forestElectroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person's head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. (C) 2016 Elsevier Ltd. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Sao Paulo State Univ, Dept Comp, Bauru, BrazilUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilMiddlesex Univ, Sch Sci & Technol, London, EnglandSao Paulo State Univ, Dept Comp, Bauru, BrazilFAPESP: 2014/16250-9CNPq: 470571/2013-6CNPq: 306166/2014-3Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Middlesex UnivRodrigues, DouglasSilva, Gabriel F. A. [UNESP]Papa, Joao P. [UNESP]Marana, Aparecido N. [UNESP]Yang, Xin-She2018-11-26T16:48:35Z2018-11-26T16:48:35Z2016-11-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article81-90application/pdfhttp://dx.doi.org/10.1016/j.eswa.2016.06.006Expert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 62, p. 81-90, 2016.0957-4174http://hdl.handle.net/11449/16177910.1016/j.eswa.2016.06.006WOS:000380626000006WOS000380626000006.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengExpert Systems With Applications1,271info:eu-repo/semantics/openAccess2024-04-23T16:10:49Zoai:repositorio.unesp.br:11449/161779Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:10:49Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv EEG-based person identification through Binary Flower Pollination Algorithm
title EEG-based person identification through Binary Flower Pollination Algorithm
spellingShingle EEG-based person identification through Binary Flower Pollination Algorithm
Rodrigues, Douglas
Meta-heuristic
Pattern classification
Biometrics
Electroencephalogram
Optimum-path forest
title_short EEG-based person identification through Binary Flower Pollination Algorithm
title_full EEG-based person identification through Binary Flower Pollination Algorithm
title_fullStr EEG-based person identification through Binary Flower Pollination Algorithm
title_full_unstemmed EEG-based person identification through Binary Flower Pollination Algorithm
title_sort EEG-based person identification through Binary Flower Pollination Algorithm
author Rodrigues, Douglas
author_facet Rodrigues, Douglas
Silva, Gabriel F. A. [UNESP]
Papa, Joao P. [UNESP]
Marana, Aparecido N. [UNESP]
Yang, Xin-She
author_role author
author2 Silva, Gabriel F. A. [UNESP]
Papa, Joao P. [UNESP]
Marana, Aparecido N. [UNESP]
Yang, Xin-She
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
Middlesex Univ
dc.contributor.author.fl_str_mv Rodrigues, Douglas
Silva, Gabriel F. A. [UNESP]
Papa, Joao P. [UNESP]
Marana, Aparecido N. [UNESP]
Yang, Xin-She
dc.subject.por.fl_str_mv Meta-heuristic
Pattern classification
Biometrics
Electroencephalogram
Optimum-path forest
topic Meta-heuristic
Pattern classification
Biometrics
Electroencephalogram
Optimum-path forest
description Electroencephalogram (EEG) signal presents a great potential for highly secure biometric systems due to its characteristics of universality, uniqueness, and natural robustness to spoofing attacks. EEG signals are measured by sensors placed in various positions of a person's head (channels). In this work, we address the problem of reducing the number of required sensors while maintaining a comparable performance. We evaluated a binary version of the Flower Pollination Algorithm under different transfer functions to select the best subset of channels that maximizes the accuracy, which is measured by means of the Optimum-Path Forest classifier. The experimental results show the proposed approach can make use of less than a half of the number of sensors while maintaining recognition rates up to 87%, which is crucial towards the effective use of EEG in biometric applications. (C) 2016 Elsevier Ltd. All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-15
2018-11-26T16:48:35Z
2018-11-26T16:48:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.eswa.2016.06.006
Expert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 62, p. 81-90, 2016.
0957-4174
http://hdl.handle.net/11449/161779
10.1016/j.eswa.2016.06.006
WOS:000380626000006
WOS000380626000006.pdf
url http://dx.doi.org/10.1016/j.eswa.2016.06.006
http://hdl.handle.net/11449/161779
identifier_str_mv Expert Systems With Applications. Oxford: Pergamon-elsevier Science Ltd, v. 62, p. 81-90, 2016.
0957-4174
10.1016/j.eswa.2016.06.006
WOS:000380626000006
WOS000380626000006.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Expert Systems With Applications
1,271
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 81-90
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483444544962560