Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://hdl.handle.net/11449/163968 |
Summary: | Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates when working together. In this paper, we present an ensemble pruning approach of Optimum-Path Forest classifiers based on metaheuristics, as well as we introduced the concept of quaternions in ensemble pruning strategies. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approach for classification problems. |
id |
UNSP_a5299e81edbf033c75c71d9ada4d4fee |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163968 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based OptimizationMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates when working together. In this paper, we present an ensemble pruning approach of Optimum-Path Forest classifiers based on metaheuristics, as well as we introduced the concept of quaternions in ensemble pruning strategies. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approach for classification problems.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilFAPESP: 2014/16250-9FAPESP: 2014/12236-1CNPq: 306166/2014-3IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Nachif Fernandes, Silas EvandroPapa, Joao Paulo [UNESP]IEEE2018-11-26T17:48:36Z2018-11-26T17:48:36Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject984-991application/pdf2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 984-991, 2017.2161-4393http://hdl.handle.net/11449/163968WOS:000426968701033WOS000426968701033.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 International Joint Conference On Neural Networks (ijcnn)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/163968Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:19Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
title |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
spellingShingle |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization Nachif Fernandes, Silas Evandro |
title_short |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
title_full |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
title_fullStr |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
title_full_unstemmed |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
title_sort |
Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization |
author |
Nachif Fernandes, Silas Evandro |
author_facet |
Nachif Fernandes, Silas Evandro Papa, Joao Paulo [UNESP] IEEE |
author_role |
author |
author2 |
Papa, Joao Paulo [UNESP] IEEE |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Nachif Fernandes, Silas Evandro Papa, Joao Paulo [UNESP] IEEE |
description |
Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates when working together. In this paper, we present an ensemble pruning approach of Optimum-Path Forest classifiers based on metaheuristics, as well as we introduced the concept of quaternions in ensemble pruning strategies. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approach for classification problems. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-26T17:48:36Z 2018-11-26T17:48:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 984-991, 2017. 2161-4393 http://hdl.handle.net/11449/163968 WOS:000426968701033 WOS000426968701033.pdf |
identifier_str_mv |
2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 984-991, 2017. 2161-4393 WOS:000426968701033 WOS000426968701033.pdf |
url |
http://hdl.handle.net/11449/163968 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2017 International Joint Conference On Neural Networks (ijcnn) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
984-991 application/pdf |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483191308615680 |