Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization

Bibliographic Details
Main Author: Nachif Fernandes, Silas Evandro
Publication Date: 2017
Other Authors: Papa, Joao Paulo [UNESP], IEEE
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://hdl.handle.net/11449/163968
Summary: Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates when working together. In this paper, we present an ensemble pruning approach of Optimum-Path Forest classifiers based on metaheuristics, as well as we introduced the concept of quaternions in ensemble pruning strategies. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approach for classification problems.
id UNSP_a5299e81edbf033c75c71d9ada4d4fee
oai_identifier_str oai:repositorio.unesp.br:11449/163968
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Pruning Optimum-Path Forest Ensembles Using Quaternion-based OptimizationMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates when working together. In this paper, we present an ensemble pruning approach of Optimum-Path Forest classifiers based on metaheuristics, as well as we introduced the concept of quaternions in ensemble pruning strategies. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approach for classification problems.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilFAPESP: 2014/16250-9FAPESP: 2014/12236-1CNPq: 306166/2014-3IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Nachif Fernandes, Silas EvandroPapa, Joao Paulo [UNESP]IEEE2018-11-26T17:48:36Z2018-11-26T17:48:36Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject984-991application/pdf2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 984-991, 2017.2161-4393http://hdl.handle.net/11449/163968WOS:000426968701033WOS000426968701033.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 International Joint Conference On Neural Networks (ijcnn)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/163968Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:19Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
title Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
spellingShingle Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
Nachif Fernandes, Silas Evandro
title_short Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
title_full Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
title_fullStr Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
title_full_unstemmed Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
title_sort Pruning Optimum-Path Forest Ensembles Using Quaternion-based Optimization
author Nachif Fernandes, Silas Evandro
author_facet Nachif Fernandes, Silas Evandro
Papa, Joao Paulo [UNESP]
IEEE
author_role author
author2 Papa, Joao Paulo [UNESP]
IEEE
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Nachif Fernandes, Silas Evandro
Papa, Joao Paulo [UNESP]
IEEE
description Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this context, we shall highlight pruning strategies, which provide heuristics to select from a collection of classifiers the ones that can really improve recognition rates when working together. In this paper, we present an ensemble pruning approach of Optimum-Path Forest classifiers based on metaheuristics, as well as we introduced the concept of quaternions in ensemble pruning strategies. Experimental results over synthetic and real datasets showed the effectiveness and efficiency of the proposed approach for classification problems.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:48:36Z
2018-11-26T17:48:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 984-991, 2017.
2161-4393
http://hdl.handle.net/11449/163968
WOS:000426968701033
WOS000426968701033.pdf
identifier_str_mv 2017 International Joint Conference On Neural Networks (ijcnn). New York: Ieee, p. 984-991, 2017.
2161-4393
WOS:000426968701033
WOS000426968701033.pdf
url http://hdl.handle.net/11449/163968
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 International Joint Conference On Neural Networks (ijcnn)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 984-991
application/pdf
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483191308615680