Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory

Bibliographic Details
Main Author: Albuquerque, Afonso Marques [UNESP]
Publication Date: 2024
Other Authors: Nespolo, Raphael Silva [UNESP], Tommaselli, Antonio Maria Garcia [UNESP], Martins-Neto, Rorai Perreira, Imai, Nilton Nobuhiro [UNESP], Alves, Daniele Barroca Marra [UNESP], Gouveia, Tayna Aparecida Ferreira [UNESP], Jerez, Gabriel Oliveira [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024
https://hdl.handle.net/11449/299734
Summary: The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient.
id UNSP_99b95a76d1736d66c372feea556ab15d
oai_identifier_str oai:repositorio.unesp.br:11449/299734
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territoryMachine learningMeteorological stationsRandom ForestZenith Wet Delay (ZWD)The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient.Česká Zemědělská Univerzita v PrazeConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculty of Science and Technology São Paulo State UniversityFaculty of Forestry and Wood Sciences Czech University of Life Sciences PragueFaculty of Science and Technology São Paulo State UniversityCNPq: 116545/2023-2CNPq: 151351/2019-8FAPESP: 2021/05285-0FAPESP: 2021/06029-7FAPESP: 2023/14739-0CNPq: 303670/2018-5CNPq: 306112/2023-0CNPq: 308747/2021-6CAPES: 88887.310313/2018-00CAPES: 88887.898553/2023-00CAPES: 88887.961778/2024-00Universidade Estadual Paulista (UNESP)Czech University of Life Sciences PragueAlbuquerque, Afonso Marques [UNESP]Nespolo, Raphael Silva [UNESP]Tommaselli, Antonio Maria Garcia [UNESP]Martins-Neto, Rorai PerreiraImai, Nilton Nobuhiro [UNESP]Alves, Daniele Barroca Marra [UNESP]Gouveia, Tayna Aparecida Ferreira [UNESP]Jerez, Gabriel Oliveira [UNESP]2025-04-29T18:43:18Z2024-11-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject13-19http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024.2194-90502194-9042https://hdl.handle.net/11449/29973410.5194/isprs-annals-X-3-2024-13-20242-s2.0-85212441099Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciencesinfo:eu-repo/semantics/openAccess2025-04-30T13:24:17Zoai:repositorio.unesp.br:11449/299734Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:24:17Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
title Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
spellingShingle Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
Albuquerque, Afonso Marques [UNESP]
Machine learning
Meteorological stations
Random Forest
Zenith Wet Delay (ZWD)
title_short Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
title_full Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
title_fullStr Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
title_full_unstemmed Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
title_sort Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
author Albuquerque, Afonso Marques [UNESP]
author_facet Albuquerque, Afonso Marques [UNESP]
Nespolo, Raphael Silva [UNESP]
Tommaselli, Antonio Maria Garcia [UNESP]
Martins-Neto, Rorai Perreira
Imai, Nilton Nobuhiro [UNESP]
Alves, Daniele Barroca Marra [UNESP]
Gouveia, Tayna Aparecida Ferreira [UNESP]
Jerez, Gabriel Oliveira [UNESP]
author_role author
author2 Nespolo, Raphael Silva [UNESP]
Tommaselli, Antonio Maria Garcia [UNESP]
Martins-Neto, Rorai Perreira
Imai, Nilton Nobuhiro [UNESP]
Alves, Daniele Barroca Marra [UNESP]
Gouveia, Tayna Aparecida Ferreira [UNESP]
Jerez, Gabriel Oliveira [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Czech University of Life Sciences Prague
dc.contributor.author.fl_str_mv Albuquerque, Afonso Marques [UNESP]
Nespolo, Raphael Silva [UNESP]
Tommaselli, Antonio Maria Garcia [UNESP]
Martins-Neto, Rorai Perreira
Imai, Nilton Nobuhiro [UNESP]
Alves, Daniele Barroca Marra [UNESP]
Gouveia, Tayna Aparecida Ferreira [UNESP]
Jerez, Gabriel Oliveira [UNESP]
dc.subject.por.fl_str_mv Machine learning
Meteorological stations
Random Forest
Zenith Wet Delay (ZWD)
topic Machine learning
Meteorological stations
Random Forest
Zenith Wet Delay (ZWD)
description The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient.
publishDate 2024
dc.date.none.fl_str_mv 2024-11-04
2025-04-29T18:43:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024.
2194-9050
2194-9042
https://hdl.handle.net/11449/299734
10.5194/isprs-annals-X-3-2024-13-2024
2-s2.0-85212441099
url http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024
https://hdl.handle.net/11449/299734
identifier_str_mv ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024.
2194-9050
2194-9042
10.5194/isprs-annals-X-3-2024-13-2024
2-s2.0-85212441099
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 13-19
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482387746029568