Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024 https://hdl.handle.net/11449/299734 |
Summary: | The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient. |
id |
UNSP_99b95a76d1736d66c372feea556ab15d |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/299734 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territoryMachine learningMeteorological stationsRandom ForestZenith Wet Delay (ZWD)The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient.Česká Zemědělská Univerzita v PrazeConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Faculty of Science and Technology São Paulo State UniversityFaculty of Forestry and Wood Sciences Czech University of Life Sciences PragueFaculty of Science and Technology São Paulo State UniversityCNPq: 116545/2023-2CNPq: 151351/2019-8FAPESP: 2021/05285-0FAPESP: 2021/06029-7FAPESP: 2023/14739-0CNPq: 303670/2018-5CNPq: 306112/2023-0CNPq: 308747/2021-6CAPES: 88887.310313/2018-00CAPES: 88887.898553/2023-00CAPES: 88887.961778/2024-00Universidade Estadual Paulista (UNESP)Czech University of Life Sciences PragueAlbuquerque, Afonso Marques [UNESP]Nespolo, Raphael Silva [UNESP]Tommaselli, Antonio Maria Garcia [UNESP]Martins-Neto, Rorai PerreiraImai, Nilton Nobuhiro [UNESP]Alves, Daniele Barroca Marra [UNESP]Gouveia, Tayna Aparecida Ferreira [UNESP]Jerez, Gabriel Oliveira [UNESP]2025-04-29T18:43:18Z2024-11-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject13-19http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024.2194-90502194-9042https://hdl.handle.net/11449/29973410.5194/isprs-annals-X-3-2024-13-20242-s2.0-85212441099Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciencesinfo:eu-repo/semantics/openAccess2025-04-30T13:24:17Zoai:repositorio.unesp.br:11449/299734Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:24:17Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
title |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
spellingShingle |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory Albuquerque, Afonso Marques [UNESP] Machine learning Meteorological stations Random Forest Zenith Wet Delay (ZWD) |
title_short |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
title_full |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
title_fullStr |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
title_full_unstemmed |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
title_sort |
Machine learning-based modelling of zenith wet delay using terrestrial meteorological data in the Brazilian territory |
author |
Albuquerque, Afonso Marques [UNESP] |
author_facet |
Albuquerque, Afonso Marques [UNESP] Nespolo, Raphael Silva [UNESP] Tommaselli, Antonio Maria Garcia [UNESP] Martins-Neto, Rorai Perreira Imai, Nilton Nobuhiro [UNESP] Alves, Daniele Barroca Marra [UNESP] Gouveia, Tayna Aparecida Ferreira [UNESP] Jerez, Gabriel Oliveira [UNESP] |
author_role |
author |
author2 |
Nespolo, Raphael Silva [UNESP] Tommaselli, Antonio Maria Garcia [UNESP] Martins-Neto, Rorai Perreira Imai, Nilton Nobuhiro [UNESP] Alves, Daniele Barroca Marra [UNESP] Gouveia, Tayna Aparecida Ferreira [UNESP] Jerez, Gabriel Oliveira [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Czech University of Life Sciences Prague |
dc.contributor.author.fl_str_mv |
Albuquerque, Afonso Marques [UNESP] Nespolo, Raphael Silva [UNESP] Tommaselli, Antonio Maria Garcia [UNESP] Martins-Neto, Rorai Perreira Imai, Nilton Nobuhiro [UNESP] Alves, Daniele Barroca Marra [UNESP] Gouveia, Tayna Aparecida Ferreira [UNESP] Jerez, Gabriel Oliveira [UNESP] |
dc.subject.por.fl_str_mv |
Machine learning Meteorological stations Random Forest Zenith Wet Delay (ZWD) |
topic |
Machine learning Meteorological stations Random Forest Zenith Wet Delay (ZWD) |
description |
The Zenith Total Delay (ZTD) is one of the primary error sources derived from the neutral atmosphere associated with the GNSS (Global Navigation Satellite Systems) technique. Zenith Wet Delay (ZWD) is the smallest part of the ZTD, but the high variability is caused by spatial-temporal variation, making the modelling of this component a challenging task. Although ZWD is considered an error in GNSS positioning, it is also a variable composed mainly of water vapour and can, therefore, be used for atmospheric investigations, and assists in climate studies for precipitation events. In this work, a model was trained to estimate the delay wet component from surface atmospheric parameters. The training data comes from 29 radiosonde stations around Brazil, for a six-year period (2017 to 2022), with data collected at 12 h UTC (Universal Time Coordinated). The model was validated using the holdout technique, with 70% of the data used in training and 30% for validation (cross-validation analysis). The generated model achieved a RMSE (Root Mean Squared Error) of approximately 38 mm, with an 81% of determination coefficient. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-11-04 2025-04-29T18:43:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024 ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024. 2194-9050 2194-9042 https://hdl.handle.net/11449/299734 10.5194/isprs-annals-X-3-2024-13-2024 2-s2.0-85212441099 |
url |
http://dx.doi.org/10.5194/isprs-annals-X-3-2024-13-2024 https://hdl.handle.net/11449/299734 |
identifier_str_mv |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 10, n. 3, p. 13-19, 2024. 2194-9050 2194-9042 10.5194/isprs-annals-X-3-2024-13-2024 2-s2.0-85212441099 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
13-19 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482387746029568 |