Climate and agrometeorology forecasting using soft computing techniques.
Main Author: | |
---|---|
Publication Date: | 2018 |
Format: | Master thesis |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://hdl.handle.net/11449/180833 |
Summary: | Precipitação, em pequenas escalas de tempo, é um fenômeno associado a altos níveis de incerteza e variabilidade. Dada a sua natureza, técnicas tradicionais de previsão são dispendiosas e exigentes em termos computacionais. Este trabalho apresenta um modelo para prever a ocorrência de chuvas em curtos intervalos de tempo por Redes Neurais Artificiais (RNAs) em períodos acumulados de 3 a 7 dias para cada estação climática, mitigando a necessidade de predizer o seu volume. Com essa premissa pretende-se reduzir a variância, aumentar a tendência dos dados diminuindo a responsabilidade do algoritmo que atua como um filtro para modelos quantitativos, removendo ocorrências subsequentes de valores de zero(ausência) de precipitação, o que influencia e reduz seu desempenho. O modelo foi desenvolvido com séries temporais de 10 regiões agricolamente relevantes no Brasil, esses locais são os que apresentam as séries temporais mais longas disponíveis e são mais deficientes em previsões climáticas precisas, com 60 anos de temperatura média diária do ar e precipitação acumulada. foram utilizados para estimar a evapotranspiração potencial e o balanço hídrico; estas foram as variáveis utilizadas como entrada para as RNAs. A precisão média para todos os períodos acumulados foi de 78% no verão, 71% no inverno 62% na primavera e 56% no outono, foi identificado que o efeito da continentalidade, o efeito da altitude e o volume da precipitação normal , tem um impacto direto na precisão das RNAs. Os modelos têm desempenho máximo em estações bem definidas, mas perdem sua precisão em épocas de transição e em locais sob influência de efeitos microclimáticos e mesoclimáticos, o que indica que essa técnica pode ser usada para indicar a eminência da precipitação com algumas limitações. |
id |
UNSP_97478596e19444b23d828a4917b87de1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/180833 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Climate and agrometeorology forecasting using soft computing techniques.Previsão climática e agrometeorológica com técnicas de computação leveArtificial neural networksRainfall forecastingMultilayer perceptronPrecipitação, em pequenas escalas de tempo, é um fenômeno associado a altos níveis de incerteza e variabilidade. Dada a sua natureza, técnicas tradicionais de previsão são dispendiosas e exigentes em termos computacionais. Este trabalho apresenta um modelo para prever a ocorrência de chuvas em curtos intervalos de tempo por Redes Neurais Artificiais (RNAs) em períodos acumulados de 3 a 7 dias para cada estação climática, mitigando a necessidade de predizer o seu volume. Com essa premissa pretende-se reduzir a variância, aumentar a tendência dos dados diminuindo a responsabilidade do algoritmo que atua como um filtro para modelos quantitativos, removendo ocorrências subsequentes de valores de zero(ausência) de precipitação, o que influencia e reduz seu desempenho. O modelo foi desenvolvido com séries temporais de 10 regiões agricolamente relevantes no Brasil, esses locais são os que apresentam as séries temporais mais longas disponíveis e são mais deficientes em previsões climáticas precisas, com 60 anos de temperatura média diária do ar e precipitação acumulada. foram utilizados para estimar a evapotranspiração potencial e o balanço hídrico; estas foram as variáveis utilizadas como entrada para as RNAs. A precisão média para todos os períodos acumulados foi de 78% no verão, 71% no inverno 62% na primavera e 56% no outono, foi identificado que o efeito da continentalidade, o efeito da altitude e o volume da precipitação normal , tem um impacto direto na precisão das RNAs. Os modelos têm desempenho máximo em estações bem definidas, mas perdem sua precisão em épocas de transição e em locais sob influência de efeitos microclimáticos e mesoclimáticos, o que indica que essa técnica pode ser usada para indicar a eminência da precipitação com algumas limitações.Precipitation, in short periods of time, is a phenomenon associated with high levels of uncertainty and variability. Given its nature, traditional forecasting techniques are expensive and computationally demanding. This paper presents a model to forecast the occurrence of rainfall in short ranges of time by Artificial Neural Networks(ANNs) in accumulated periods from 3 to 7 days for each climatic season, mitigating the necessity of predicting its amount. With this premise it is intended to reduce the variance, rise the bias of data and lower the responsibility of the model acting as a filter for quantitative models by removing subsequent occurrences of zeros values of rainfall which leads to bias the and reduces its performance. The model were developed with time series from 10 agriculturally relevant regions in Brazil, these places are the ones with the longest available weather time series and and more deficient in accurate climate predictions, it was available 60 years of daily mean air temperature and accumulated precipitation which were used to estimate the potential evapotranspiration and water balance; these were the variables used as inputs for the ANNs models. The mean accuracy of the model for all the accumulated periods were 78% on summer, 71% on winter 62% on spring and 56% on autumn, it was identified that the effect of continentality, the effect of altitude and the volume of normal precipitation, have a direct impact on the accuracy of the ANNs. The models have peak performance in well-defined seasons, but loses its accuracy in transitional seasons and places under influence of macro-climatic and mesoclimatic effects, which indicates that this technique can be used to indicate the eminence of rainfall with some limitations.Universidade Estadual Paulista (Unesp)Rolim, Glauco de Souza [UNESP]Universidade Estadual Paulista (Unesp)Esteves, João Trevizoli2019-02-25T19:59:04Z2019-02-25T19:59:04Z2018-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/11449/18083300091319633004102001P4enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-06-04T19:50:48Zoai:repositorio.unesp.br:11449/180833Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T15:19:52.530343Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Climate and agrometeorology forecasting using soft computing techniques. Previsão climática e agrometeorológica com técnicas de computação leve |
title |
Climate and agrometeorology forecasting using soft computing techniques. |
spellingShingle |
Climate and agrometeorology forecasting using soft computing techniques. Esteves, João Trevizoli Artificial neural networks Rainfall forecasting Multilayer perceptron |
title_short |
Climate and agrometeorology forecasting using soft computing techniques. |
title_full |
Climate and agrometeorology forecasting using soft computing techniques. |
title_fullStr |
Climate and agrometeorology forecasting using soft computing techniques. |
title_full_unstemmed |
Climate and agrometeorology forecasting using soft computing techniques. |
title_sort |
Climate and agrometeorology forecasting using soft computing techniques. |
author |
Esteves, João Trevizoli |
author_facet |
Esteves, João Trevizoli |
author_role |
author |
dc.contributor.none.fl_str_mv |
Rolim, Glauco de Souza [UNESP] Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Esteves, João Trevizoli |
dc.subject.por.fl_str_mv |
Artificial neural networks Rainfall forecasting Multilayer perceptron |
topic |
Artificial neural networks Rainfall forecasting Multilayer perceptron |
description |
Precipitação, em pequenas escalas de tempo, é um fenômeno associado a altos níveis de incerteza e variabilidade. Dada a sua natureza, técnicas tradicionais de previsão são dispendiosas e exigentes em termos computacionais. Este trabalho apresenta um modelo para prever a ocorrência de chuvas em curtos intervalos de tempo por Redes Neurais Artificiais (RNAs) em períodos acumulados de 3 a 7 dias para cada estação climática, mitigando a necessidade de predizer o seu volume. Com essa premissa pretende-se reduzir a variância, aumentar a tendência dos dados diminuindo a responsabilidade do algoritmo que atua como um filtro para modelos quantitativos, removendo ocorrências subsequentes de valores de zero(ausência) de precipitação, o que influencia e reduz seu desempenho. O modelo foi desenvolvido com séries temporais de 10 regiões agricolamente relevantes no Brasil, esses locais são os que apresentam as séries temporais mais longas disponíveis e são mais deficientes em previsões climáticas precisas, com 60 anos de temperatura média diária do ar e precipitação acumulada. foram utilizados para estimar a evapotranspiração potencial e o balanço hídrico; estas foram as variáveis utilizadas como entrada para as RNAs. A precisão média para todos os períodos acumulados foi de 78% no verão, 71% no inverno 62% na primavera e 56% no outono, foi identificado que o efeito da continentalidade, o efeito da altitude e o volume da precipitação normal , tem um impacto direto na precisão das RNAs. Os modelos têm desempenho máximo em estações bem definidas, mas perdem sua precisão em épocas de transição e em locais sob influência de efeitos microclimáticos e mesoclimáticos, o que indica que essa técnica pode ser usada para indicar a eminência da precipitação com algumas limitações. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-07 2019-02-25T19:59:04Z 2019-02-25T19:59:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11449/180833 000913196 33004102001P4 |
url |
http://hdl.handle.net/11449/180833 |
identifier_str_mv |
000913196 33004102001P4 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
publisher.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484046675050496 |