Export Ready — 

Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection

Bibliographic Details
Main Author: Camargo da Silva, Vinícius [UNESP]
Publication Date: 2023
Other Authors: Paulo Papa, João [UNESP], Augusto Pontara da Costa, Kelton [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.5220/0011664100003417
https://hdl.handle.net/11449/305875
Summary: Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.
id UNSP_8c0bbbe6097eb65063caf800dec8730c
oai_identifier_str oai:repositorio.unesp.br:11449/305875
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence SelectionInterpretable LearningNLPText SummarizationAutomatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)São Paulo State University-UNESPSão Paulo State University-UNESPFAPESP: #2013/07375-0FAPESP: #2014/12236-1FAPESP: #2019/07665-4FAPESP: #2019/18287-0FAPESP: #2021/05516-1CNPq: 308529/2021-9Universidade Estadual Paulista (UNESP)Camargo da Silva, Vinícius [UNESP]Paulo Papa, João [UNESP]Augusto Pontara da Costa, Kelton [UNESP]2025-04-29T20:04:27Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject737-745http://dx.doi.org/10.5220/0011664100003417Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 4, p. 737-745.2184-43212184-5921https://hdl.handle.net/11449/30587510.5220/00116641000034172-s2.0-85183600389Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T13:56:12Zoai:repositorio.unesp.br:11449/305875Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:56:12Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
title Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
spellingShingle Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
Camargo da Silva, Vinícius [UNESP]
Interpretable Learning
NLP
Text Summarization
title_short Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
title_full Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
title_fullStr Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
title_full_unstemmed Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
title_sort Extractive Text Summarization Using Generalized Additive Models with Interactions for Sentence Selection
author Camargo da Silva, Vinícius [UNESP]
author_facet Camargo da Silva, Vinícius [UNESP]
Paulo Papa, João [UNESP]
Augusto Pontara da Costa, Kelton [UNESP]
author_role author
author2 Paulo Papa, João [UNESP]
Augusto Pontara da Costa, Kelton [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Camargo da Silva, Vinícius [UNESP]
Paulo Papa, João [UNESP]
Augusto Pontara da Costa, Kelton [UNESP]
dc.subject.por.fl_str_mv Interpretable Learning
NLP
Text Summarization
topic Interpretable Learning
NLP
Text Summarization
description Automatic Text Summarization (ATS) is becoming relevant with the growth of textual data; however, with the popularization of public large-scale datasets, some recent machine learning approaches have focused on dense models and architectures that, despite producing notable results, usually turn out in models difficult to interpret. Given the challenge behind interpretable learning-based text summarization and the importance it may have for evolving the current state of the ATS field, this work studies the application of two modern Generalized Additive Models with interactions, namely Explainable Boosting Machine and GAMI-Net, to the extractive summarization problem based on linguistic features and binary classification.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01
2025-04-29T20:04:27Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.5220/0011664100003417
Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 4, p. 737-745.
2184-4321
2184-5921
https://hdl.handle.net/11449/305875
10.5220/0011664100003417
2-s2.0-85183600389
url http://dx.doi.org/10.5220/0011664100003417
https://hdl.handle.net/11449/305875
identifier_str_mv Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, v. 4, p. 737-745.
2184-4321
2184-5921
10.5220/0011664100003417
2-s2.0-85183600389
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 737-745
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482755255140352