Self-calibrated convolution towards glioma segmentation
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1109/SIPAIM56729.2023.10373517 https://hdl.handle.net/11449/308428 |
Summary: | Accurate brain tumor segmentation in the early stages of the disease is crucial for the treatment's effectiveness, avoiding exhaustive visual inspection of a qualified specialist on 3D MR brain images of multiple protocols (e.g., T1, T2, T2-FLAIR, T1-Gd). Several networks exist for Glioma segmentation, being nnU-Net one of the best. In this work, we evaluate self-calibrated convolutions in different parts of the nnU-Net network to demonstrate that self-calibrated modules in skip connections can significantly improve the enhanced-tumor and tumor-core segmentation accuracy while preserving the wholetumor segmentation accuracy. |
id |
UNSP_8b42fb274c835d1f56990361f79bfc0a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/308428 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Self-calibrated convolution towards glioma segmentation3D Image SegmentationMedical Image AnalysisNeural NetworksAccurate brain tumor segmentation in the early stages of the disease is crucial for the treatment's effectiveness, avoiding exhaustive visual inspection of a qualified specialist on 3D MR brain images of multiple protocols (e.g., T1, T2, T2-FLAIR, T1-Gd). Several networks exist for Glioma segmentation, being nnU-Net one of the best. In this work, we evaluate self-calibrated convolutions in different parts of the nnU-Net network to demonstrate that self-calibrated modules in skip connections can significantly improve the enhanced-tumor and tumor-core segmentation accuracy while preserving the wholetumor segmentation accuracy.Eldorado Institute Computational Photography Department (DFC)State University of Campinas (UNICAMP)São Paulo State University (UNESP)São Paulo State University (UNESP)Computational Photography Department (DFC)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (UNESP)Salvagnini, Felipe C. R.Barbosa, Gerson O.Falcao, Alexandre X. [UNESP]Santos, Cid A. N.2025-04-29T20:12:32Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/SIPAIM56729.2023.10373517Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023.https://hdl.handle.net/11449/30842810.1109/SIPAIM56729.2023.103735172-s2.0-85183465364Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023info:eu-repo/semantics/openAccess2025-04-30T13:24:13Zoai:repositorio.unesp.br:11449/308428Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:24:13Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Self-calibrated convolution towards glioma segmentation |
title |
Self-calibrated convolution towards glioma segmentation |
spellingShingle |
Self-calibrated convolution towards glioma segmentation Salvagnini, Felipe C. R. 3D Image Segmentation Medical Image Analysis Neural Networks |
title_short |
Self-calibrated convolution towards glioma segmentation |
title_full |
Self-calibrated convolution towards glioma segmentation |
title_fullStr |
Self-calibrated convolution towards glioma segmentation |
title_full_unstemmed |
Self-calibrated convolution towards glioma segmentation |
title_sort |
Self-calibrated convolution towards glioma segmentation |
author |
Salvagnini, Felipe C. R. |
author_facet |
Salvagnini, Felipe C. R. Barbosa, Gerson O. Falcao, Alexandre X. [UNESP] Santos, Cid A. N. |
author_role |
author |
author2 |
Barbosa, Gerson O. Falcao, Alexandre X. [UNESP] Santos, Cid A. N. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Computational Photography Department (DFC) Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Salvagnini, Felipe C. R. Barbosa, Gerson O. Falcao, Alexandre X. [UNESP] Santos, Cid A. N. |
dc.subject.por.fl_str_mv |
3D Image Segmentation Medical Image Analysis Neural Networks |
topic |
3D Image Segmentation Medical Image Analysis Neural Networks |
description |
Accurate brain tumor segmentation in the early stages of the disease is crucial for the treatment's effectiveness, avoiding exhaustive visual inspection of a qualified specialist on 3D MR brain images of multiple protocols (e.g., T1, T2, T2-FLAIR, T1-Gd). Several networks exist for Glioma segmentation, being nnU-Net one of the best. In this work, we evaluate self-calibrated convolutions in different parts of the nnU-Net network to demonstrate that self-calibrated modules in skip connections can significantly improve the enhanced-tumor and tumor-core segmentation accuracy while preserving the wholetumor segmentation accuracy. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-01-01 2025-04-29T20:12:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIPAIM56729.2023.10373517 Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023. https://hdl.handle.net/11449/308428 10.1109/SIPAIM56729.2023.10373517 2-s2.0-85183465364 |
url |
http://dx.doi.org/10.1109/SIPAIM56729.2023.10373517 https://hdl.handle.net/11449/308428 |
identifier_str_mv |
Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023. 10.1109/SIPAIM56729.2023.10373517 2-s2.0-85183465364 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the 19th International Symposium on Medical Information Processing and Analysis, SIPAIM 2023 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482436137811968 |