A massive gauge theory à la Utiyama
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1088/1402-4896/ace561 https://hdl.handle.net/11449/298486 |
Summary: | Utiyama’s method is a deductive approach of building gauge theories for semi-simple groups of local transformations, including the Abelian U(1) case, the non-Abelian SU(N) group, and the gravitational interaction. Gauge theories à la Utiyama typically predict a massless gauge potential. This work brings a mass generation mechanism and Utiyama’s method together thus giving mass to the interaction boson without breaking the gauge symmetry. Herein we devote our attention to the Abelian case. Two gauge potentials are introduced: a vetor field A μ and a scalar field B. The associated gauge-invariant field strengths F μ ν and G μ are built from Utiyama’s technique. Gauge invariance requirement upon the total Lagrangian (including matter fields and gauge fields) yields the conserved currents. Finally, we study the simplest type of Lagrangian involving the field strengths and obtain the related field equation. By imposing appropriate constraints on this particular example, Stueckelberg model is recovered. |
id |
UNSP_8ac94b08c1b4c20fd1373fe27183a059 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/298486 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A massive gauge theory à la Utiyamagauge theorymass generation mechanismU(1) symmetry groupUtiyama’s method is a deductive approach of building gauge theories for semi-simple groups of local transformations, including the Abelian U(1) case, the non-Abelian SU(N) group, and the gravitational interaction. Gauge theories à la Utiyama typically predict a massless gauge potential. This work brings a mass generation mechanism and Utiyama’s method together thus giving mass to the interaction boson without breaking the gauge symmetry. Herein we devote our attention to the Abelian case. Two gauge potentials are introduced: a vetor field A μ and a scalar field B. The associated gauge-invariant field strengths F μ ν and G μ are built from Utiyama’s technique. Gauge invariance requirement upon the total Lagrangian (including matter fields and gauge fields) yields the conserved currents. Finally, we study the simplest type of Lagrangian involving the field strengths and obtain the related field equation. By imposing appropriate constraints on this particular example, Stueckelberg model is recovered.Department of Physics University of OttawaInstituto de Ciência e Tecnologia Universidade Federal de Alfenas, Rodovia José Aurélio Vilela, 11999 MGInstituto de Física Teórica São Paulo State University, P.O. Box 70532-2 SPDepartamento de Física Instituto Tecnológico de Aeronáutica, Praça Mal. Eduardo Gomes, 50 SPInstituto de Física Teórica São Paulo State University, P.O. Box 70532-2 SPUniversity of OttawaUniversidade Federal de AlfenasUniversidade Estadual Paulista (UNESP)Instituto Tecnológico de AeronáuticaCuzinatto, R. R.Pimentel, B. M. [UNESP]Pompeia, P. J.Sumire Esquia, J. C. [UNESP]2025-04-29T18:37:15Z2023-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1402-4896/ace561Physica Scripta, v. 98, n. 8, 2023.1402-48960031-8949https://hdl.handle.net/11449/29848610.1088/1402-4896/ace5612-s2.0-85165893408Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysica Scriptainfo:eu-repo/semantics/openAccess2025-04-30T14:24:11Zoai:repositorio.unesp.br:11449/298486Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:24:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A massive gauge theory à la Utiyama |
title |
A massive gauge theory à la Utiyama |
spellingShingle |
A massive gauge theory à la Utiyama Cuzinatto, R. R. gauge theory mass generation mechanism U(1) symmetry group |
title_short |
A massive gauge theory à la Utiyama |
title_full |
A massive gauge theory à la Utiyama |
title_fullStr |
A massive gauge theory à la Utiyama |
title_full_unstemmed |
A massive gauge theory à la Utiyama |
title_sort |
A massive gauge theory à la Utiyama |
author |
Cuzinatto, R. R. |
author_facet |
Cuzinatto, R. R. Pimentel, B. M. [UNESP] Pompeia, P. J. Sumire Esquia, J. C. [UNESP] |
author_role |
author |
author2 |
Pimentel, B. M. [UNESP] Pompeia, P. J. Sumire Esquia, J. C. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
University of Ottawa Universidade Federal de Alfenas Universidade Estadual Paulista (UNESP) Instituto Tecnológico de Aeronáutica |
dc.contributor.author.fl_str_mv |
Cuzinatto, R. R. Pimentel, B. M. [UNESP] Pompeia, P. J. Sumire Esquia, J. C. [UNESP] |
dc.subject.por.fl_str_mv |
gauge theory mass generation mechanism U(1) symmetry group |
topic |
gauge theory mass generation mechanism U(1) symmetry group |
description |
Utiyama’s method is a deductive approach of building gauge theories for semi-simple groups of local transformations, including the Abelian U(1) case, the non-Abelian SU(N) group, and the gravitational interaction. Gauge theories à la Utiyama typically predict a massless gauge potential. This work brings a mass generation mechanism and Utiyama’s method together thus giving mass to the interaction boson without breaking the gauge symmetry. Herein we devote our attention to the Abelian case. Two gauge potentials are introduced: a vetor field A μ and a scalar field B. The associated gauge-invariant field strengths F μ ν and G μ are built from Utiyama’s technique. Gauge invariance requirement upon the total Lagrangian (including matter fields and gauge fields) yields the conserved currents. Finally, we study the simplest type of Lagrangian involving the field strengths and obtain the related field equation. By imposing appropriate constraints on this particular example, Stueckelberg model is recovered. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-01 2025-04-29T18:37:15Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1088/1402-4896/ace561 Physica Scripta, v. 98, n. 8, 2023. 1402-4896 0031-8949 https://hdl.handle.net/11449/298486 10.1088/1402-4896/ace561 2-s2.0-85165893408 |
url |
http://dx.doi.org/10.1088/1402-4896/ace561 https://hdl.handle.net/11449/298486 |
identifier_str_mv |
Physica Scripta, v. 98, n. 8, 2023. 1402-4896 0031-8949 10.1088/1402-4896/ace561 2-s2.0-85165893408 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Physica Scripta |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482589365174272 |