On the limit cycles of a quartic model for Evolutionary Stable Strategies

Bibliographic Details
Main Author: Gasull, Armengol
Publication Date: 2025
Other Authors: Gouveia, Luiz F.S. [UNESP], Santana, Paulo [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1016/j.nonrwa.2024.104313
https://hdl.handle.net/11449/302228
Summary: This paper studies the number of centers and limit cycles of the family of planar quartic polynomial vector fields that has the invariant algebraic curve (4x2−1)(4y2−1)=0. The main interest for this type of vector fields comes from their appearance in some mathematical models in Game Theory composed by two players. In particular, we find examples with five nested limit cycles surrounding the same singularity, as well as examples with four limit cycles formed by two disjoint nests, each one of them with two limit cycles. We also prove a Berlinskiĭ’s type result for this family of vector fields.
id UNSP_75bf39c9d1d0c31b3bbd0b7ea49d0dad
oai_identifier_str oai:repositorio.unesp.br:11449/302228
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the limit cycles of a quartic model for Evolutionary Stable StrategiesBerlinskiĭ’s theoremCenter-focusCyclicityEvolutionary Stable StrategiesLimit cyclesEvolutionary stable strategiesInvariant algebraic curvesLimit-cycleNumber of centersPolynomial vector fieldQuartic polynomialVector fieldsThis paper studies the number of centers and limit cycles of the family of planar quartic polynomial vector fields that has the invariant algebraic curve (4x2−1)(4y2−1)=0. The main interest for this type of vector fields comes from their appearance in some mathematical models in Game Theory composed by two players. In particular, we find examples with five nested limit cycles surrounding the same singularity, as well as examples with four limit cycles formed by two disjoint nests, each one of them with two limit cycles. We also prove a Berlinskiĭ’s type result for this family of vector fields.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departament de Matemàtiques Facultat de Ciències Universitat Autònoma de Barcelona, BellaterraUNICAMP Campinas Brazil & UNESP, S. J. Rio PretoUNESP, S. J. Rio PretoUNICAMP Campinas Brazil & UNESP, S. J. Rio PretoUNESP, S. J. Rio PretoFAPESP: 2019/10269-3FAPESP: 2020/04717-0FAPESP: 2021/01799-9FAPESP: 2022/03801-3FAPESP: 2022/14353-1Universitat Autònoma de BarcelonaUniversidade Estadual Paulista (UNESP)Gasull, ArmengolGouveia, Luiz F.S. [UNESP]Santana, Paulo [UNESP]2025-04-29T19:13:56Z2025-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.nonrwa.2024.104313Nonlinear Analysis: Real World Applications, v. 84.1468-1218https://hdl.handle.net/11449/30222810.1016/j.nonrwa.2024.1043132-s2.0-85213944663Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Analysis: Real World Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T14:04:11Zoai:repositorio.unesp.br:11449/302228Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:04:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the limit cycles of a quartic model for Evolutionary Stable Strategies
title On the limit cycles of a quartic model for Evolutionary Stable Strategies
spellingShingle On the limit cycles of a quartic model for Evolutionary Stable Strategies
Gasull, Armengol
Berlinskiĭ’s theorem
Center-focus
Cyclicity
Evolutionary Stable Strategies
Limit cycles
Evolutionary stable strategies
Invariant algebraic curves
Limit-cycle
Number of centers
Polynomial vector field
Quartic polynomial
Vector fields
title_short On the limit cycles of a quartic model for Evolutionary Stable Strategies
title_full On the limit cycles of a quartic model for Evolutionary Stable Strategies
title_fullStr On the limit cycles of a quartic model for Evolutionary Stable Strategies
title_full_unstemmed On the limit cycles of a quartic model for Evolutionary Stable Strategies
title_sort On the limit cycles of a quartic model for Evolutionary Stable Strategies
author Gasull, Armengol
author_facet Gasull, Armengol
Gouveia, Luiz F.S. [UNESP]
Santana, Paulo [UNESP]
author_role author
author2 Gouveia, Luiz F.S. [UNESP]
Santana, Paulo [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universitat Autònoma de Barcelona
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Gasull, Armengol
Gouveia, Luiz F.S. [UNESP]
Santana, Paulo [UNESP]
dc.subject.por.fl_str_mv Berlinskiĭ’s theorem
Center-focus
Cyclicity
Evolutionary Stable Strategies
Limit cycles
Evolutionary stable strategies
Invariant algebraic curves
Limit-cycle
Number of centers
Polynomial vector field
Quartic polynomial
Vector fields
topic Berlinskiĭ’s theorem
Center-focus
Cyclicity
Evolutionary Stable Strategies
Limit cycles
Evolutionary stable strategies
Invariant algebraic curves
Limit-cycle
Number of centers
Polynomial vector field
Quartic polynomial
Vector fields
description This paper studies the number of centers and limit cycles of the family of planar quartic polynomial vector fields that has the invariant algebraic curve (4x2−1)(4y2−1)=0. The main interest for this type of vector fields comes from their appearance in some mathematical models in Game Theory composed by two players. In particular, we find examples with five nested limit cycles surrounding the same singularity, as well as examples with four limit cycles formed by two disjoint nests, each one of them with two limit cycles. We also prove a Berlinskiĭ’s type result for this family of vector fields.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-29T19:13:56Z
2025-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.nonrwa.2024.104313
Nonlinear Analysis: Real World Applications, v. 84.
1468-1218
https://hdl.handle.net/11449/302228
10.1016/j.nonrwa.2024.104313
2-s2.0-85213944663
url http://dx.doi.org/10.1016/j.nonrwa.2024.104313
https://hdl.handle.net/11449/302228
identifier_str_mv Nonlinear Analysis: Real World Applications, v. 84.
1468-1218
10.1016/j.nonrwa.2024.104313
2-s2.0-85213944663
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nonlinear Analysis: Real World Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482864594354176