On the limit cycles of a quartic model for Evolutionary Stable Strategies
| Main Author: | |
|---|---|
| Publication Date: | 2025 |
| Other Authors: | , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.1016/j.nonrwa.2024.104313 https://hdl.handle.net/11449/302228 |
Summary: | This paper studies the number of centers and limit cycles of the family of planar quartic polynomial vector fields that has the invariant algebraic curve (4x2−1)(4y2−1)=0. The main interest for this type of vector fields comes from their appearance in some mathematical models in Game Theory composed by two players. In particular, we find examples with five nested limit cycles surrounding the same singularity, as well as examples with four limit cycles formed by two disjoint nests, each one of them with two limit cycles. We also prove a Berlinskiĭ’s type result for this family of vector fields. |
| id |
UNSP_75bf39c9d1d0c31b3bbd0b7ea49d0dad |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/302228 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
On the limit cycles of a quartic model for Evolutionary Stable StrategiesBerlinskiĭ’s theoremCenter-focusCyclicityEvolutionary Stable StrategiesLimit cyclesEvolutionary stable strategiesInvariant algebraic curvesLimit-cycleNumber of centersPolynomial vector fieldQuartic polynomialVector fieldsThis paper studies the number of centers and limit cycles of the family of planar quartic polynomial vector fields that has the invariant algebraic curve (4x2−1)(4y2−1)=0. The main interest for this type of vector fields comes from their appearance in some mathematical models in Game Theory composed by two players. In particular, we find examples with five nested limit cycles surrounding the same singularity, as well as examples with four limit cycles formed by two disjoint nests, each one of them with two limit cycles. We also prove a Berlinskiĭ’s type result for this family of vector fields.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departament de Matemàtiques Facultat de Ciències Universitat Autònoma de Barcelona, BellaterraUNICAMP Campinas Brazil & UNESP, S. J. Rio PretoUNESP, S. J. Rio PretoUNICAMP Campinas Brazil & UNESP, S. J. Rio PretoUNESP, S. J. Rio PretoFAPESP: 2019/10269-3FAPESP: 2020/04717-0FAPESP: 2021/01799-9FAPESP: 2022/03801-3FAPESP: 2022/14353-1Universitat Autònoma de BarcelonaUniversidade Estadual Paulista (UNESP)Gasull, ArmengolGouveia, Luiz F.S. [UNESP]Santana, Paulo [UNESP]2025-04-29T19:13:56Z2025-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.nonrwa.2024.104313Nonlinear Analysis: Real World Applications, v. 84.1468-1218https://hdl.handle.net/11449/30222810.1016/j.nonrwa.2024.1043132-s2.0-85213944663Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Analysis: Real World Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T14:04:11Zoai:repositorio.unesp.br:11449/302228Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:04:11Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| title |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| spellingShingle |
On the limit cycles of a quartic model for Evolutionary Stable Strategies Gasull, Armengol Berlinskiĭ’s theorem Center-focus Cyclicity Evolutionary Stable Strategies Limit cycles Evolutionary stable strategies Invariant algebraic curves Limit-cycle Number of centers Polynomial vector field Quartic polynomial Vector fields |
| title_short |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| title_full |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| title_fullStr |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| title_full_unstemmed |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| title_sort |
On the limit cycles of a quartic model for Evolutionary Stable Strategies |
| author |
Gasull, Armengol |
| author_facet |
Gasull, Armengol Gouveia, Luiz F.S. [UNESP] Santana, Paulo [UNESP] |
| author_role |
author |
| author2 |
Gouveia, Luiz F.S. [UNESP] Santana, Paulo [UNESP] |
| author2_role |
author author |
| dc.contributor.none.fl_str_mv |
Universitat Autònoma de Barcelona Universidade Estadual Paulista (UNESP) |
| dc.contributor.author.fl_str_mv |
Gasull, Armengol Gouveia, Luiz F.S. [UNESP] Santana, Paulo [UNESP] |
| dc.subject.por.fl_str_mv |
Berlinskiĭ’s theorem Center-focus Cyclicity Evolutionary Stable Strategies Limit cycles Evolutionary stable strategies Invariant algebraic curves Limit-cycle Number of centers Polynomial vector field Quartic polynomial Vector fields |
| topic |
Berlinskiĭ’s theorem Center-focus Cyclicity Evolutionary Stable Strategies Limit cycles Evolutionary stable strategies Invariant algebraic curves Limit-cycle Number of centers Polynomial vector field Quartic polynomial Vector fields |
| description |
This paper studies the number of centers and limit cycles of the family of planar quartic polynomial vector fields that has the invariant algebraic curve (4x2−1)(4y2−1)=0. The main interest for this type of vector fields comes from their appearance in some mathematical models in Game Theory composed by two players. In particular, we find examples with five nested limit cycles surrounding the same singularity, as well as examples with four limit cycles formed by two disjoint nests, each one of them with two limit cycles. We also prove a Berlinskiĭ’s type result for this family of vector fields. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-29T19:13:56Z 2025-08-01 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.nonrwa.2024.104313 Nonlinear Analysis: Real World Applications, v. 84. 1468-1218 https://hdl.handle.net/11449/302228 10.1016/j.nonrwa.2024.104313 2-s2.0-85213944663 |
| url |
http://dx.doi.org/10.1016/j.nonrwa.2024.104313 https://hdl.handle.net/11449/302228 |
| identifier_str_mv |
Nonlinear Analysis: Real World Applications, v. 84. 1468-1218 10.1016/j.nonrwa.2024.104313 2-s2.0-85213944663 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Nonlinear Analysis: Real World Applications |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834482864594354176 |