The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1
Main Author: | |
---|---|
Publication Date: | 2025 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1016/j.na.2024.113677 https://hdl.handle.net/11449/297339 |
Summary: | In this paper we study the asymptotic behavior of solutions to the (p,q)-equation [Formula presented]has at least two constant sign solutions and one sign-changing solution, whereby the sign-changing solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space W01,q(Ω) which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space BV(Ω) of all functions of bounded variation. As far as we know this is the first work dealing with (1,q)-Laplace problems even in the direction of constant sign solutions. |
id |
UNSP_74bb230760dbc3cc6e18ece17b4f0a09 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/297339 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 11-laplacianAsymptotic behaviorFunctions of bounded variationp goes to 1Sign-changing solutionsIn this paper we study the asymptotic behavior of solutions to the (p,q)-equation [Formula presented]has at least two constant sign solutions and one sign-changing solution, whereby the sign-changing solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space W01,q(Ω) which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space BV(Ω) of all functions of bounded variation. As far as we know this is the first work dealing with (1,q)-Laplace problems even in the direction of constant sign solutions.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Apoio à Pesquisa do Distrito FederalFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Matemática Universidade de Brasília - UnB, CEP: 70910-900, Brasília-DFDepartamento de Matemática e Computação Universidade Estadual Paulista - Unesp, CEP: 19060-900, Presidente Prudente - SPTechnische Universität Berlin Institut für Mathematik, Straße des 17. Juni 136Departamento de Matemática e Computação Universidade Estadual Paulista - Unesp, CEP: 19060-900, Presidente Prudente - SPFAPESP: 2023/06617-1FAPESP: 2023/10287-7CNPq: 304765/2021-0Universidade de Brasília (UnB)Universidade Estadual Paulista (UNESP)Institut für MathematikFigueiredo, Giovany M.Pimenta, Marcos T.O. [UNESP]Winkert, Patrick2025-04-29T18:06:17Z2025-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.na.2024.113677Nonlinear Analysis, Theory, Methods and Applications, v. 251.0362-546Xhttps://hdl.handle.net/11449/29733910.1016/j.na.2024.1136772-s2.0-85205307901Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNonlinear Analysis, Theory, Methods and Applicationsinfo:eu-repo/semantics/openAccess2025-04-30T14:28:20Zoai:repositorio.unesp.br:11449/297339Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:28:20Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
title |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
spellingShingle |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 Figueiredo, Giovany M. 1-laplacian Asymptotic behavior Functions of bounded variation p goes to 1 Sign-changing solutions |
title_short |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
title_full |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
title_fullStr |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
title_full_unstemmed |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
title_sort |
The asymptotic behavior of constant sign and nodal solutions of (p,q)-Laplacian problems as p goes to 1 |
author |
Figueiredo, Giovany M. |
author_facet |
Figueiredo, Giovany M. Pimenta, Marcos T.O. [UNESP] Winkert, Patrick |
author_role |
author |
author2 |
Pimenta, Marcos T.O. [UNESP] Winkert, Patrick |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade de Brasília (UnB) Universidade Estadual Paulista (UNESP) Institut für Mathematik |
dc.contributor.author.fl_str_mv |
Figueiredo, Giovany M. Pimenta, Marcos T.O. [UNESP] Winkert, Patrick |
dc.subject.por.fl_str_mv |
1-laplacian Asymptotic behavior Functions of bounded variation p goes to 1 Sign-changing solutions |
topic |
1-laplacian Asymptotic behavior Functions of bounded variation p goes to 1 Sign-changing solutions |
description |
In this paper we study the asymptotic behavior of solutions to the (p,q)-equation [Formula presented]has at least two constant sign solutions and one sign-changing solution, whereby the sign-changing solution has least energy among all sign-changing solutions. Furthermore, the solutions belong to the usual Sobolev space W01,q(Ω) which is in contrast with the case of 1-Laplacian problems, where the solutions just belong to the space BV(Ω) of all functions of bounded variation. As far as we know this is the first work dealing with (1,q)-Laplace problems even in the direction of constant sign solutions. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04-29T18:06:17Z 2025-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.na.2024.113677 Nonlinear Analysis, Theory, Methods and Applications, v. 251. 0362-546X https://hdl.handle.net/11449/297339 10.1016/j.na.2024.113677 2-s2.0-85205307901 |
url |
http://dx.doi.org/10.1016/j.na.2024.113677 https://hdl.handle.net/11449/297339 |
identifier_str_mv |
Nonlinear Analysis, Theory, Methods and Applications, v. 251. 0362-546X 10.1016/j.na.2024.113677 2-s2.0-85205307901 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nonlinear Analysis, Theory, Methods and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482960465657856 |