Power simulation of a CubeSat: influence of orbit, attitude and thermal control

Bibliographic Details
Main Author: Santana, Andre L. Rodrigues
Publication Date: 2023
Other Authors: Filho, Edemar Morsch, de Souza, Francisco das Chagas, Seman, Laio O.
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/LES.2023.3250101
http://hdl.handle.net/11449/246936
Summary: CubeSats must endure the extreme temperature and radiation changes that are a result of the environment in orbit. The power system of CubeSats, which produces the electrical energy required to carry out the activities, is a crucial component. The photovoltaic effect, a phenomenon whose maximum power point decreases as temperature rises while the peak rises with solar radiation intensity rises, is used by the majority of satellites, including CubeSats, to convert solar radiation into electrical energy. High temperatures should be avoided since they decrease the effectiveness of this photovoltaic phenomenon, whereas high solar radiation levels are required to produce more energy. This study evaluates a simulation of a CubeSat 1U with solar panels mounted on all of its faces to examine the impact of orbit, attitude, and temperature management on power generation. The outcomes show that higher performance may be obtained by carefully choosing these factors.
id UNSP_6fde4ec93ab3f1f9f97f3f318b068f46
oai_identifier_str oai:repositorio.unesp.br:11449/246936
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Power simulation of a CubeSat: influence of orbit, attitude and thermal controlCubesatCubeSatOrbitsPhotovoltaic CellPower GenerationSimulationSolar PanelSolar panelsSolar radiationSpace heatingSpace vehiclesSunCubeSats must endure the extreme temperature and radiation changes that are a result of the environment in orbit. The power system of CubeSats, which produces the electrical energy required to carry out the activities, is a crucial component. The photovoltaic effect, a phenomenon whose maximum power point decreases as temperature rises while the peak rises with solar radiation intensity rises, is used by the majority of satellites, including CubeSats, to convert solar radiation into electrical energy. High temperatures should be avoided since they decrease the effectiveness of this photovoltaic phenomenon, whereas high solar radiation levels are required to produce more energy. This study evaluates a simulation of a CubeSat 1U with solar panels mounted on all of its faces to examine the impact of orbit, attitude, and temperature management on power generation. The outcomes show that higher performance may be obtained by carefully choosing these factors.Federal University of Maranhão, MA, BrazilSão Paulo State University, SP, BrazilUniversity of Vale do Itajaí, SC, Brazil2023-07-29T12:54:36Z2023-07-29T12:54:36Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1109/LES.2023.3250101IEEE Embedded Systems Letters.1943-06711943-0663http://hdl.handle.net/11449/24693610.1109/LES.2023.32501012-s2.0-85149371748Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIEEE Embedded Systems LettersSantana, Andre L. RodriguesFilho, Edemar Morschde Souza, Francisco das ChagasSeman, Laio O.info:eu-repo/semantics/openAccess2023-07-29T12:54:36Zoai:repositorio.unesp.br:11449/246936Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T15:07:56.341417Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Power simulation of a CubeSat: influence of orbit, attitude and thermal control
title Power simulation of a CubeSat: influence of orbit, attitude and thermal control
spellingShingle Power simulation of a CubeSat: influence of orbit, attitude and thermal control
Santana, Andre L. Rodrigues
Cubesat
CubeSat
Orbits
Photovoltaic Cell
Power Generation
Simulation
Solar Panel
Solar panels
Solar radiation
Space heating
Space vehicles
Sun
title_short Power simulation of a CubeSat: influence of orbit, attitude and thermal control
title_full Power simulation of a CubeSat: influence of orbit, attitude and thermal control
title_fullStr Power simulation of a CubeSat: influence of orbit, attitude and thermal control
title_full_unstemmed Power simulation of a CubeSat: influence of orbit, attitude and thermal control
title_sort Power simulation of a CubeSat: influence of orbit, attitude and thermal control
author Santana, Andre L. Rodrigues
author_facet Santana, Andre L. Rodrigues
Filho, Edemar Morsch
de Souza, Francisco das Chagas
Seman, Laio O.
author_role author
author2 Filho, Edemar Morsch
de Souza, Francisco das Chagas
Seman, Laio O.
author2_role author
author
author
dc.contributor.author.fl_str_mv Santana, Andre L. Rodrigues
Filho, Edemar Morsch
de Souza, Francisco das Chagas
Seman, Laio O.
dc.subject.por.fl_str_mv Cubesat
CubeSat
Orbits
Photovoltaic Cell
Power Generation
Simulation
Solar Panel
Solar panels
Solar radiation
Space heating
Space vehicles
Sun
topic Cubesat
CubeSat
Orbits
Photovoltaic Cell
Power Generation
Simulation
Solar Panel
Solar panels
Solar radiation
Space heating
Space vehicles
Sun
description CubeSats must endure the extreme temperature and radiation changes that are a result of the environment in orbit. The power system of CubeSats, which produces the electrical energy required to carry out the activities, is a crucial component. The photovoltaic effect, a phenomenon whose maximum power point decreases as temperature rises while the peak rises with solar radiation intensity rises, is used by the majority of satellites, including CubeSats, to convert solar radiation into electrical energy. High temperatures should be avoided since they decrease the effectiveness of this photovoltaic phenomenon, whereas high solar radiation levels are required to produce more energy. This study evaluates a simulation of a CubeSat 1U with solar panels mounted on all of its faces to examine the impact of orbit, attitude, and temperature management on power generation. The outcomes show that higher performance may be obtained by carefully choosing these factors.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-29T12:54:36Z
2023-07-29T12:54:36Z
2023-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/LES.2023.3250101
IEEE Embedded Systems Letters.
1943-0671
1943-0663
http://hdl.handle.net/11449/246936
10.1109/LES.2023.3250101
2-s2.0-85149371748
url http://dx.doi.org/10.1109/LES.2023.3250101
http://hdl.handle.net/11449/246936
identifier_str_mv IEEE Embedded Systems Letters.
1943-0671
1943-0663
10.1109/LES.2023.3250101
2-s2.0-85149371748
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv IEEE Embedded Systems Letters
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483050565599232