Electrical load forecasting formulation by a fast neural network
Main Author: | |
---|---|
Publication Date: | 2003 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://hdl.handle.net/11449/224313 |
Summary: | The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective. |
id |
UNSP_6fb15081c34e5f4c6675da44e9fcc9c1 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/224313 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Electrical load forecasting formulation by a fast neural networkBackpropagationFuzzy logicLoad forecastingNeural networksShort termThe objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.Departamento de Engenharia Eletrica Universidade Estadual Paulista UNESP, Ilha Solteria, SPDepartamento de Engenharia Eletrica Universidade Estadual Paulista UNESP, Ilha Solteria, SPUniversidade Estadual Paulista (UNESP)Lopes, Mara Lúcia M. [UNESP]Minussi, Carlos R. [UNESP]Lotufo, Anna Diva P. [UNESP]2022-04-28T19:55:54Z2022-04-28T19:55:54Z2003-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article51-57International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, v. 11, n. 1, p. 51-57, 2003.1472-8915http://hdl.handle.net/11449/2243132-s2.0-0038038897Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Engineering Intelligent Systems for Electrical Engineering and Communicationsinfo:eu-repo/semantics/openAccess2024-07-04T19:06:02Zoai:repositorio.unesp.br:11449/224313Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:06:02Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Electrical load forecasting formulation by a fast neural network |
title |
Electrical load forecasting formulation by a fast neural network |
spellingShingle |
Electrical load forecasting formulation by a fast neural network Lopes, Mara Lúcia M. [UNESP] Backpropagation Fuzzy logic Load forecasting Neural networks Short term |
title_short |
Electrical load forecasting formulation by a fast neural network |
title_full |
Electrical load forecasting formulation by a fast neural network |
title_fullStr |
Electrical load forecasting formulation by a fast neural network |
title_full_unstemmed |
Electrical load forecasting formulation by a fast neural network |
title_sort |
Electrical load forecasting formulation by a fast neural network |
author |
Lopes, Mara Lúcia M. [UNESP] |
author_facet |
Lopes, Mara Lúcia M. [UNESP] Minussi, Carlos R. [UNESP] Lotufo, Anna Diva P. [UNESP] |
author_role |
author |
author2 |
Minussi, Carlos R. [UNESP] Lotufo, Anna Diva P. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Lopes, Mara Lúcia M. [UNESP] Minussi, Carlos R. [UNESP] Lotufo, Anna Diva P. [UNESP] |
dc.subject.por.fl_str_mv |
Backpropagation Fuzzy logic Load forecasting Neural networks Short term |
topic |
Backpropagation Fuzzy logic Load forecasting Neural networks Short term |
description |
The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003-03-01 2022-04-28T19:55:54Z 2022-04-28T19:55:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, v. 11, n. 1, p. 51-57, 2003. 1472-8915 http://hdl.handle.net/11449/224313 2-s2.0-0038038897 |
identifier_str_mv |
International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, v. 11, n. 1, p. 51-57, 2003. 1472-8915 2-s2.0-0038038897 |
url |
http://hdl.handle.net/11449/224313 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
51-57 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483126460481536 |