Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials

Bibliographic Details
Main Author: Dimitrov, Dimitar Kolev [UNESP]
Publication Date: 2010
Other Authors: Mello, Mirela V. [UNESP], Rafaeli, Fernando R.
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1016/j.apnum.2009.12.004
http://hdl.handle.net/11449/21755
Summary: Consider the inner product< p, q > = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1) integral(t)(-t) p(x)q(x)(alpha) (1 + x)(beta) dx+ Mp(1)q(1)+ Np'(1)q'(1) + 1 (M) over tildep(-1)q(-1)+ (N) over tildep'(-1)q'(-1)where alpha, beta > -1 and M,N,(M) over tilde,(N) over tilde >= 0. If mu = (M,N,(M) over tilde,(N) over tilde), we denote by x(n,k)(mu)(alpha,beta), k =1,...n, the zeros of the n-th polynomial P(n)((alpha,beta,mu)) (x), orthogonal with respect to the above inner product. We investigate the location, interlacing properties, asymptotics and monotonicity of x(n,k)(mu)(alpha,beta) with respect to the parameters M, N,(M) over tilde,(N) over tilde in two important cases, when either i = N = 0 or N = 0. The results are obtained through careful analysis of the behavior and the asymptotics of the zeros of polynomials of the form p,,(x)= hn(x) + cgn(x) as functions of(C) 2010 IMACS. Published by Elsevier BA/. All rights reserved.
id UNSP_6bcb3e4854a9969d36f91aa4e94989fa
oai_identifier_str oai:repositorio.unesp.br:11449/21755
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomialsJacobi orthogonal polynomialsJacobi-Sobolev type orthogonal polynomialsZerosMonotonicityAsymptoticConsider the inner product< p, q > = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1) integral(t)(-t) p(x)q(x)(alpha) (1 + x)(beta) dx+ Mp(1)q(1)+ Np'(1)q'(1) + 1 (M) over tildep(-1)q(-1)+ (N) over tildep'(-1)q'(-1)where alpha, beta > -1 and M,N,(M) over tilde,(N) over tilde >= 0. If mu = (M,N,(M) over tilde,(N) over tilde), we denote by x(n,k)(mu)(alpha,beta), k =1,...n, the zeros of the n-th polynomial P(n)((alpha,beta,mu)) (x), orthogonal with respect to the above inner product. We investigate the location, interlacing properties, asymptotics and monotonicity of x(n,k)(mu)(alpha,beta) with respect to the parameters M, N,(M) over tilde,(N) over tilde in two important cases, when either i = N = 0 or N = 0. The results are obtained through careful analysis of the behavior and the asymptotics of the zeros of polynomials of the form p,,(x)= hn(x) + cgn(x) as functions of(C) 2010 IMACS. Published by Elsevier BA/. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, IBILCE, Dept Ciencias Computacao & Estatist, São Paulo, BrazilUniv Estadual Campinas, Inst Matemat Estatist & Computacao Cient, BR-13081970 Campinas, SP, BrazilUniv Estadual Paulista, IBILCE, Dept Ciencias Computacao & Estatist, São Paulo, BrazilCAPES: DGU 160/08FAPESP: 03/01874-2FAPESP: 07/02854-6CNPq: 304830/2006-2Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Dimitrov, Dimitar Kolev [UNESP]Mello, Mirela V. [UNESP]Rafaeli, Fernando R.2014-05-20T14:01:39Z2014-05-20T14:01:39Z2010-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article263-276http://dx.doi.org/10.1016/j.apnum.2009.12.004Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 60, n. 3, p. 263-276, 2010.0168-9274http://hdl.handle.net/11449/2175510.1016/j.apnum.2009.12.004WOS:0002768392000081681267716971253Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Numerical Mathematics1.2630,930info:eu-repo/semantics/openAccess2024-10-25T14:47:31Zoai:repositorio.unesp.br:11449/21755Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T14:55:41.734155Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
title Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
spellingShingle Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
Dimitrov, Dimitar Kolev [UNESP]
Jacobi orthogonal polynomials
Jacobi-Sobolev type orthogonal polynomials
Zeros
Monotonicity
Asymptotic
title_short Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
title_full Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
title_fullStr Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
title_full_unstemmed Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
title_sort Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
author Dimitrov, Dimitar Kolev [UNESP]
author_facet Dimitrov, Dimitar Kolev [UNESP]
Mello, Mirela V. [UNESP]
Rafaeli, Fernando R.
author_role author
author2 Mello, Mirela V. [UNESP]
Rafaeli, Fernando R.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Dimitrov, Dimitar Kolev [UNESP]
Mello, Mirela V. [UNESP]
Rafaeli, Fernando R.
dc.subject.por.fl_str_mv Jacobi orthogonal polynomials
Jacobi-Sobolev type orthogonal polynomials
Zeros
Monotonicity
Asymptotic
topic Jacobi orthogonal polynomials
Jacobi-Sobolev type orthogonal polynomials
Zeros
Monotonicity
Asymptotic
description Consider the inner product< p, q > = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1) integral(t)(-t) p(x)q(x)(alpha) (1 + x)(beta) dx+ Mp(1)q(1)+ Np'(1)q'(1) + 1 (M) over tildep(-1)q(-1)+ (N) over tildep'(-1)q'(-1)where alpha, beta > -1 and M,N,(M) over tilde,(N) over tilde >= 0. If mu = (M,N,(M) over tilde,(N) over tilde), we denote by x(n,k)(mu)(alpha,beta), k =1,...n, the zeros of the n-th polynomial P(n)((alpha,beta,mu)) (x), orthogonal with respect to the above inner product. We investigate the location, interlacing properties, asymptotics and monotonicity of x(n,k)(mu)(alpha,beta) with respect to the parameters M, N,(M) over tilde,(N) over tilde in two important cases, when either i = N = 0 or N = 0. The results are obtained through careful analysis of the behavior and the asymptotics of the zeros of polynomials of the form p,,(x)= hn(x) + cgn(x) as functions of(C) 2010 IMACS. Published by Elsevier BA/. All rights reserved.
publishDate 2010
dc.date.none.fl_str_mv 2010-03-01
2014-05-20T14:01:39Z
2014-05-20T14:01:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.apnum.2009.12.004
Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 60, n. 3, p. 263-276, 2010.
0168-9274
http://hdl.handle.net/11449/21755
10.1016/j.apnum.2009.12.004
WOS:000276839200008
1681267716971253
url http://dx.doi.org/10.1016/j.apnum.2009.12.004
http://hdl.handle.net/11449/21755
identifier_str_mv Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 60, n. 3, p. 263-276, 2010.
0168-9274
10.1016/j.apnum.2009.12.004
WOS:000276839200008
1681267716971253
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Numerical Mathematics
1.263
0,930
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 263-276
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482992768090112