Barrett's Esophagus Identification Using Optimum-Path Forest

Bibliographic Details
Main Author: Souza, Luis A.
Publication Date: 2017
Other Authors: Afonso, Luis C. S., Palm, Christoph, Papa, Joao P. [UNESP], IEEE
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/SIBGRAPI.2017.47
http://hdl.handle.net/11449/163866
Summary: Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.
id UNSP_6b037fb0ebb31f58808981ac6eeaa2c4
oai_identifier_str oai:repositorio.unesp.br:11449/163866
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Barrett's Esophagus Identification Using Optimum-Path ForestComputer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, BrazilOstbayer Tech Hsch, D-93053 Regensburg, GermanySao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilFAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3CAPES: BEX 0581-16-0IeeeUniversidade Federal de São Carlos (UFSCar)Ostbayer Tech HschUniversidade Estadual Paulista (Unesp)Souza, Luis A.Afonso, Luis C. S.Palm, ChristophPapa, Joao P. [UNESP]IEEE2018-11-26T17:48:13Z2018-11-26T17:48:13Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject308-314http://dx.doi.org/10.1109/SIBGRAPI.2017.472017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017.1530-1834http://hdl.handle.net/11449/16386610.1109/SIBGRAPI.2017.47WOS:000425243500041Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)info:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/163866Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:33Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Barrett's Esophagus Identification Using Optimum-Path Forest
title Barrett's Esophagus Identification Using Optimum-Path Forest
spellingShingle Barrett's Esophagus Identification Using Optimum-Path Forest
Souza, Luis A.
title_short Barrett's Esophagus Identification Using Optimum-Path Forest
title_full Barrett's Esophagus Identification Using Optimum-Path Forest
title_fullStr Barrett's Esophagus Identification Using Optimum-Path Forest
title_full_unstemmed Barrett's Esophagus Identification Using Optimum-Path Forest
title_sort Barrett's Esophagus Identification Using Optimum-Path Forest
author Souza, Luis A.
author_facet Souza, Luis A.
Afonso, Luis C. S.
Palm, Christoph
Papa, Joao P. [UNESP]
IEEE
author_role author
author2 Afonso, Luis C. S.
Palm, Christoph
Papa, Joao P. [UNESP]
IEEE
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Ostbayer Tech Hsch
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Souza, Luis A.
Afonso, Luis C. S.
Palm, Christoph
Papa, Joao P. [UNESP]
IEEE
description Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:48:13Z
2018-11-26T17:48:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SIBGRAPI.2017.47
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017.
1530-1834
http://hdl.handle.net/11449/163866
10.1109/SIBGRAPI.2017.47
WOS:000425243500041
url http://dx.doi.org/10.1109/SIBGRAPI.2017.47
http://hdl.handle.net/11449/163866
identifier_str_mv 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017.
1530-1834
10.1109/SIBGRAPI.2017.47
WOS:000425243500041
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 308-314
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483702798745600