Barrett's Esophagus Identification Using Optimum-Path Forest
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1109/SIBGRAPI.2017.47 http://hdl.handle.net/11449/163866 |
Summary: | Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy. |
id |
UNSP_6b037fb0ebb31f58808981ac6eeaa2c4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163866 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Barrett's Esophagus Identification Using Optimum-Path ForestComputer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, BrazilOstbayer Tech Hsch, D-93053 Regensburg, GermanySao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, SP, BrazilFAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3CAPES: BEX 0581-16-0IeeeUniversidade Federal de São Carlos (UFSCar)Ostbayer Tech HschUniversidade Estadual Paulista (Unesp)Souza, Luis A.Afonso, Luis C. S.Palm, ChristophPapa, Joao P. [UNESP]IEEE2018-11-26T17:48:13Z2018-11-26T17:48:13Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject308-314http://dx.doi.org/10.1109/SIBGRAPI.2017.472017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017.1530-1834http://hdl.handle.net/11449/16386610.1109/SIBGRAPI.2017.47WOS:000425243500041Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)info:eu-repo/semantics/openAccess2024-04-23T16:11:33Zoai:repositorio.unesp.br:11449/163866Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:33Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Barrett's Esophagus Identification Using Optimum-Path Forest |
title |
Barrett's Esophagus Identification Using Optimum-Path Forest |
spellingShingle |
Barrett's Esophagus Identification Using Optimum-Path Forest Souza, Luis A. |
title_short |
Barrett's Esophagus Identification Using Optimum-Path Forest |
title_full |
Barrett's Esophagus Identification Using Optimum-Path Forest |
title_fullStr |
Barrett's Esophagus Identification Using Optimum-Path Forest |
title_full_unstemmed |
Barrett's Esophagus Identification Using Optimum-Path Forest |
title_sort |
Barrett's Esophagus Identification Using Optimum-Path Forest |
author |
Souza, Luis A. |
author_facet |
Souza, Luis A. Afonso, Luis C. S. Palm, Christoph Papa, Joao P. [UNESP] IEEE |
author_role |
author |
author2 |
Afonso, Luis C. S. Palm, Christoph Papa, Joao P. [UNESP] IEEE |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Ostbayer Tech Hsch Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Souza, Luis A. Afonso, Luis C. S. Palm, Christoph Papa, Joao P. [UNESP] IEEE |
description |
Computer-assisted analysis of endoscopic images can be helpful to the automatic diagnosis and classification of neoplastic lesions. Barrett's esophagus (BE) is a common type of reflux that is not straightforward to be detected by endoscopic surveillance, thus being way susceptible to erroneous diagnosis, which can cause cancer when not treated properly. In this work, we introduce the Optimum-Path Forest (OPF) classifier to the task of automatic identification of Barrett's esophagus, with promising results and outperforming the well-known Support Vector Machines (SVM) in the aforementioned context. We consider describing endoscopic images by means of feature extractors based on key point information, such as the Speeded up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT), for further designing a bag-of-visual-words that is used to feed both OPF and SVM classifiers. The best results were obtained by means of the OPF classifier for both feature extractors, with values lying on 0.732 (SURF) - 0.735 (SIFT) for sensitivity, 0.782 (SURF) - 0.806 (SIFT) for specificity, and 0.738 (SURF) - 0.732 (SIFT) for the accuracy. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-26T17:48:13Z 2018-11-26T17:48:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIBGRAPI.2017.47 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017. 1530-1834 http://hdl.handle.net/11449/163866 10.1109/SIBGRAPI.2017.47 WOS:000425243500041 |
url |
http://dx.doi.org/10.1109/SIBGRAPI.2017.47 http://hdl.handle.net/11449/163866 |
identifier_str_mv |
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 308-314, 2017. 1530-1834 10.1109/SIBGRAPI.2017.47 WOS:000425243500041 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
308-314 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483702798745600 |