SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , , , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://hdl.handle.net/11449/166039 |
Summary: | Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies. |
id |
UNSP_6af45f7fe4e07f84eb6b380b14d7097e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/166039 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETSDeep LearningSemantic Image SegmentationUnmanned Aerial VehiclesPlant SpeciesVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, BrazilUniv Estadual Paulista, IGCE, Rio Claro, SP, BrazilUniv Estadual Paulista, IB, Rio Claro, SP, BrazilUniv Estadual Campinas, Inst Comp, Campinas, SP, BrazilUniv Estadual Paulista, IGCE, Rio Claro, SP, BrazilUniv Estadual Paulista, IB, Rio Claro, SP, BrazilCNPq: 449638/2014-6FAPESP: 2014/12236-1FAPESP: 2014/50715-9FAPESP: 2013/50155-0FAPESP: 2013/50169-1FAPEMIG: APQ-00768-14IeeeUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerSantos, Jefersson A. dosCancian, Leonardo [UNESP]Borges, Bruno D. [UNESP]Silva, Thiago S. F. [UNESP]Morellato, Leonor Patrícia Cerdeira [UNESP]Torres, Ricardo da S.IEEE2018-11-29T09:28:10Z2018-11-29T09:28:10Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject3787-37902017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017.2153-6996http://hdl.handle.net/11449/166039WOS:000426954603221Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 Ieee International Geoscience And Remote Sensing Symposium (igarss)info:eu-repo/semantics/openAccess2025-03-12T17:59:15Zoai:repositorio.unesp.br:11449/166039Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T14:30:05.206856Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
title |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
spellingShingle |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS Nogueira, Keiller Deep Learning Semantic Image Segmentation Unmanned Aerial Vehicles Plant Species |
title_short |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
title_full |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
title_fullStr |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
title_full_unstemmed |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
title_sort |
SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS |
author |
Nogueira, Keiller |
author_facet |
Nogueira, Keiller Santos, Jefersson A. dos Cancian, Leonardo [UNESP] Borges, Bruno D. [UNESP] Silva, Thiago S. F. [UNESP] Morellato, Leonor Patrícia Cerdeira [UNESP] Torres, Ricardo da S. IEEE |
author_role |
author |
author2 |
Santos, Jefersson A. dos Cancian, Leonardo [UNESP] Borges, Bruno D. [UNESP] Silva, Thiago S. F. [UNESP] Morellato, Leonor Patrícia Cerdeira [UNESP] Torres, Ricardo da S. IEEE |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Minas Gerais (UFMG) Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Nogueira, Keiller Santos, Jefersson A. dos Cancian, Leonardo [UNESP] Borges, Bruno D. [UNESP] Silva, Thiago S. F. [UNESP] Morellato, Leonor Patrícia Cerdeira [UNESP] Torres, Ricardo da S. IEEE |
dc.subject.por.fl_str_mv |
Deep Learning Semantic Image Segmentation Unmanned Aerial Vehicles Plant Species |
topic |
Deep Learning Semantic Image Segmentation Unmanned Aerial Vehicles Plant Species |
description |
Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-29T09:28:10Z 2018-11-29T09:28:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
2017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017. 2153-6996 http://hdl.handle.net/11449/166039 WOS:000426954603221 |
identifier_str_mv |
2017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017. 2153-6996 WOS:000426954603221 |
url |
http://hdl.handle.net/11449/166039 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2017 Ieee International Geoscience And Remote Sensing Symposium (igarss) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
3787-3790 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482975946833920 |