SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS

Bibliographic Details
Main Author: Nogueira, Keiller
Publication Date: 2017
Other Authors: Santos, Jefersson A. dos, Cancian, Leonardo [UNESP], Borges, Bruno D. [UNESP], Silva, Thiago S. F. [UNESP], Morellato, Leonor Patrícia Cerdeira [UNESP], Torres, Ricardo da S., IEEE
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://hdl.handle.net/11449/166039
Summary: Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
id UNSP_6af45f7fe4e07f84eb6b380b14d7097e
oai_identifier_str oai:repositorio.unesp.br:11449/166039
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETSDeep LearningSemantic Image SegmentationUnmanned Aerial VehiclesPlant SpeciesVegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, BrazilUniv Estadual Paulista, IGCE, Rio Claro, SP, BrazilUniv Estadual Paulista, IB, Rio Claro, SP, BrazilUniv Estadual Campinas, Inst Comp, Campinas, SP, BrazilUniv Estadual Paulista, IGCE, Rio Claro, SP, BrazilUniv Estadual Paulista, IB, Rio Claro, SP, BrazilCNPq: 449638/2014-6FAPESP: 2014/12236-1FAPESP: 2014/50715-9FAPESP: 2013/50155-0FAPESP: 2013/50169-1FAPEMIG: APQ-00768-14IeeeUniversidade Federal de Minas Gerais (UFMG)Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Nogueira, KeillerSantos, Jefersson A. dosCancian, Leonardo [UNESP]Borges, Bruno D. [UNESP]Silva, Thiago S. F. [UNESP]Morellato, Leonor Patrícia Cerdeira [UNESP]Torres, Ricardo da S.IEEE2018-11-29T09:28:10Z2018-11-29T09:28:10Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject3787-37902017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017.2153-6996http://hdl.handle.net/11449/166039WOS:000426954603221Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 Ieee International Geoscience And Remote Sensing Symposium (igarss)info:eu-repo/semantics/openAccess2025-03-12T17:59:15Zoai:repositorio.unesp.br:11449/166039Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-03-28T14:30:05.206856Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
title SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
spellingShingle SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
Nogueira, Keiller
Deep Learning
Semantic Image Segmentation
Unmanned Aerial Vehicles
Plant Species
title_short SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
title_full SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
title_fullStr SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
title_full_unstemmed SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
title_sort SEMANTIC SEGMENTATION OF VEGETATION IMAGES ACQUIRED BY UNMANNED AERIAL VEHICLES USING AN ENSEMBLE OF CONVNETS
author Nogueira, Keiller
author_facet Nogueira, Keiller
Santos, Jefersson A. dos
Cancian, Leonardo [UNESP]
Borges, Bruno D. [UNESP]
Silva, Thiago S. F. [UNESP]
Morellato, Leonor Patrícia Cerdeira [UNESP]
Torres, Ricardo da S.
IEEE
author_role author
author2 Santos, Jefersson A. dos
Cancian, Leonardo [UNESP]
Borges, Bruno D. [UNESP]
Silva, Thiago S. F. [UNESP]
Morellato, Leonor Patrícia Cerdeira [UNESP]
Torres, Ricardo da S.
IEEE
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Minas Gerais (UFMG)
Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Nogueira, Keiller
Santos, Jefersson A. dos
Cancian, Leonardo [UNESP]
Borges, Bruno D. [UNESP]
Silva, Thiago S. F. [UNESP]
Morellato, Leonor Patrícia Cerdeira [UNESP]
Torres, Ricardo da S.
IEEE
dc.subject.por.fl_str_mv Deep Learning
Semantic Image Segmentation
Unmanned Aerial Vehicles
Plant Species
topic Deep Learning
Semantic Image Segmentation
Unmanned Aerial Vehicles
Plant Species
description Vegetation segmentation in high resolution images acquired by unmanned aerial vehicles (UAVs) is a challenging task that requires methods capable of learning high-level features while dealing with fine-grained data. In this paper, we propose a combination of different methods of semantic segmentation based on Convolutional Networks (ConvNets) to obtain highly accurate segmentation of individuals of different vegetation species. The objective is not only to learn specific and adaptable features depending on the data, but also to learn and combine appropriate classifiers. We conducted a systematic evaluation using a high-resolution UAV-based image dataset related to a campo rupestre vegetation in the Brazilian Cerrado biome. Experimental results show that the ensemble technique overcomes all segmentation strategies.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-29T09:28:10Z
2018-11-29T09:28:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 2017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017.
2153-6996
http://hdl.handle.net/11449/166039
WOS:000426954603221
identifier_str_mv 2017 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 3787-3790, 2017.
2153-6996
WOS:000426954603221
url http://hdl.handle.net/11449/166039
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 Ieee International Geoscience And Remote Sensing Symposium (igarss)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 3787-3790
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482975946833920