Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method

Detalhes bibliográficos
Autor(a) principal: Sabillon, Carlos [UNESP]
Data de Publicação: 2018
Outros Autores: Franco, John F. [UNESP], Rider, Marcos J., Romero, Ruben [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ijepes.2018.05.015
http://hdl.handle.net/11449/184823
Resumo: The growing penetration of low-carbon technologies in residential networks such as photovoltaic generation (PV) units and electric vehicles (EVs) may cause technical issues on the grid. Thus, operation planning of electrical distribution networks (EDNs) should consider the inclusion of these technologies in order to avoid operational limit breaches. This paper proposes a dynamic scheduling method for the optimal operation of PV units and EVs in unbalanced residential EDNs, considering energy storage systems (ESSs). The proposed method optimizes the joint operation of PV units and EVs, using ESSs to increase the local consumption of the renewable energy. A rolling multi-period strategy based on a mixed integer linear programming model is used to dynamically optimize a centralized decision making, determining control actions for on-load tap changers (OLTCs), ESSs, PV units, and EVs connected to the network. At each time interval, data for PV generation and EV demand is updated using actual information and historical profiles, generating an updated forecast for a one-day-ahead operation in order to properly cope with weather uncertainties and EV owner's behavior without the need of multiple scenarios. The effectiveness and robustness of this approach are verified in different cases via a 107-node test EDN.
id UNSP_68dd7ed6c68d7a6eab9cc46afa6fbcd7
oai_identifier_str oai:repositorio.unesp.br:11449/184823
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling methodDistribution networksElectric vehiclesEnergy storage systemsMixed integer linear programmingPhotovoltaic unitsThe growing penetration of low-carbon technologies in residential networks such as photovoltaic generation (PV) units and electric vehicles (EVs) may cause technical issues on the grid. Thus, operation planning of electrical distribution networks (EDNs) should consider the inclusion of these technologies in order to avoid operational limit breaches. This paper proposes a dynamic scheduling method for the optimal operation of PV units and EVs in unbalanced residential EDNs, considering energy storage systems (ESSs). The proposed method optimizes the joint operation of PV units and EVs, using ESSs to increase the local consumption of the renewable energy. A rolling multi-period strategy based on a mixed integer linear programming model is used to dynamically optimize a centralized decision making, determining control actions for on-load tap changers (OLTCs), ESSs, PV units, and EVs connected to the network. At each time interval, data for PV generation and EV demand is updated using actual information and historical profiles, generating an updated forecast for a one-day-ahead operation in order to properly cope with weather uncertainties and EV owner's behavior without the need of multiple scenarios. The effectiveness and robustness of this approach are verified in different cases via a 107-node test EDN.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Sao Paulo State Univ, Fac Engn llha Solteira, Ilha Solteira, SP, BrazilSao Paulo State Univ, Sch Energy Engn, BR-19274000 Rosana, BrazilUniv Estadual Campinas, Dept Syst & Energy, Campinas, SP, BrazilSao Paulo State Univ, Fac Engn llha Solteira, Ilha Solteira, SP, BrazilSao Paulo State Univ, Sch Energy Engn, BR-19274000 Rosana, BrazilCNPq: 313047/2017-0FAPESP: 2015/21972-6FAPESP: 2017/02831-8FAPESP: 2018/08008-4Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Sabillon, Carlos [UNESP]Franco, John F. [UNESP]Rider, Marcos J.Romero, Ruben [UNESP]2019-10-04T12:30:17Z2019-10-04T12:30:17Z2018-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article136-145http://dx.doi.org/10.1016/j.ijepes.2018.05.015International Journal Of Electrical Power & Energy Systems. Oxford: Elsevier Sci Ltd, v. 103, p. 136-145, 2018.0142-0615http://hdl.handle.net/11449/18482310.1016/j.ijepes.2018.05.015WOS:000439746200014Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal Of Electrical Power & Energy Systemsinfo:eu-repo/semantics/openAccess2024-08-06T18:56:03Zoai:repositorio.unesp.br:11449/184823Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-08-06T18:56:03Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
title Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
spellingShingle Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
Sabillon, Carlos [UNESP]
Distribution networks
Electric vehicles
Energy storage systems
Mixed integer linear programming
Photovoltaic units
title_short Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
title_full Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
title_fullStr Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
title_full_unstemmed Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
title_sort Joint optimal operation of photovoltaic units and electric vehicles in residential networks with storage systems: A dynamic scheduling method
author Sabillon, Carlos [UNESP]
author_facet Sabillon, Carlos [UNESP]
Franco, John F. [UNESP]
Rider, Marcos J.
Romero, Ruben [UNESP]
author_role author
author2 Franco, John F. [UNESP]
Rider, Marcos J.
Romero, Ruben [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Sabillon, Carlos [UNESP]
Franco, John F. [UNESP]
Rider, Marcos J.
Romero, Ruben [UNESP]
dc.subject.por.fl_str_mv Distribution networks
Electric vehicles
Energy storage systems
Mixed integer linear programming
Photovoltaic units
topic Distribution networks
Electric vehicles
Energy storage systems
Mixed integer linear programming
Photovoltaic units
description The growing penetration of low-carbon technologies in residential networks such as photovoltaic generation (PV) units and electric vehicles (EVs) may cause technical issues on the grid. Thus, operation planning of electrical distribution networks (EDNs) should consider the inclusion of these technologies in order to avoid operational limit breaches. This paper proposes a dynamic scheduling method for the optimal operation of PV units and EVs in unbalanced residential EDNs, considering energy storage systems (ESSs). The proposed method optimizes the joint operation of PV units and EVs, using ESSs to increase the local consumption of the renewable energy. A rolling multi-period strategy based on a mixed integer linear programming model is used to dynamically optimize a centralized decision making, determining control actions for on-load tap changers (OLTCs), ESSs, PV units, and EVs connected to the network. At each time interval, data for PV generation and EV demand is updated using actual information and historical profiles, generating an updated forecast for a one-day-ahead operation in order to properly cope with weather uncertainties and EV owner's behavior without the need of multiple scenarios. The effectiveness and robustness of this approach are verified in different cases via a 107-node test EDN.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-01
2019-10-04T12:30:17Z
2019-10-04T12:30:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ijepes.2018.05.015
International Journal Of Electrical Power & Energy Systems. Oxford: Elsevier Sci Ltd, v. 103, p. 136-145, 2018.
0142-0615
http://hdl.handle.net/11449/184823
10.1016/j.ijepes.2018.05.015
WOS:000439746200014
url http://dx.doi.org/10.1016/j.ijepes.2018.05.015
http://hdl.handle.net/11449/184823
identifier_str_mv International Journal Of Electrical Power & Energy Systems. Oxford: Elsevier Sci Ltd, v. 103, p. 136-145, 2018.
0142-0615
10.1016/j.ijepes.2018.05.015
WOS:000439746200014
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal Of Electrical Power & Energy Systems
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 136-145
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1851767450043940864