Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.5540/tema.2016.017.03.0305 http://hdl.handle.net/11449/212206 |
Summary: | Two important optimization problems occur in the planning and production scheduling inpaper industries: the lot sizing problem and the cutting stock problem. The lot sizing problem must determine the quantity of jumbos of different types of paper to be produced in each machine over a finite planning horizon. These jumbos are then cut in order to meet the demand of items for each period. In this paper, we deal with the integration of these two problems, aiming to minimize costs of production and inventory of jumbos, as well as the trim loss of paper generated during the cutting process. Two mathematical models for the integrated problem are considered, and these models are solved both heuristically and using an optimization package. Attempting to get lower bounds for the problem, relaxed versions of the models also have been solved. Finally, computational experiments are presented and discussed. |
id |
UNSP_656d037510fa16fbf0d23bf774698c6a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/212206 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industryintegrated problemcutting stock problemlot sizing problempaper industryProblema integradoproblema de corte de estoqueproblema de dimensionamento de lotesindústria de papelTwo important optimization problems occur in the planning and production scheduling inpaper industries: the lot sizing problem and the cutting stock problem. The lot sizing problem must determine the quantity of jumbos of different types of paper to be produced in each machine over a finite planning horizon. These jumbos are then cut in order to meet the demand of items for each period. In this paper, we deal with the integration of these two problems, aiming to minimize costs of production and inventory of jumbos, as well as the trim loss of paper generated during the cutting process. Two mathematical models for the integrated problem are considered, and these models are solved both heuristically and using an optimization package. Attempting to get lower bounds for the problem, relaxed versions of the models also have been solved. Finally, computational experiments are presented and discussed.Dois importantes problemas de otimização combinatória ocorrem no planejamento da produção em indústrias papeleiras: o problema de dimensionamento de lotes e o problema de corte de estoque multiperíodo. O problema de dimensionamento de lotes deve determinar a quantidade de bobinas jumbos de diferentes tipos de papel (gramaturas) a serem produzidos em cada máquina, ao longo de um horizonte de planejamento finito. Estes jumbos são então cortados para atender a demanda de itens para cada período. Neste trabalho, tratamos da integração desses dois problemas, procurando minimizar custos com produção e estoque dos jumbos, como também a perda de papel durante o processo de corte. Duas modelagens matemáticas para o problema integrado foram consideradas, e os modelos foram resolvidos heuristicamente usando um pacote de otimização. Procurando obter limitantes inferiores para o problema, foram resolvidas versões relaxadas dos modelos. Finalmente, experimentos computacionais são apresentados e discutidos.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de CiênciasUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática AplicadaUniversidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação CientíficaUniversidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de CiênciasUniversidade Estadual Paulista Júlio de Mesquita Filho, Departamento de Matemática AplicadaCNPq: 2010/10133-0; 2013/07375-0FAPESP: 2010/10133-0; 2013/07375-0Sociedade Brasileira de Matemática Aplicada e ComputacionalUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Poltroniere, S.c. [UNESP]Araujo, S.a. [UNESP]Poldi, K.c.2021-07-14T10:36:19Z2021-07-14T10:36:19Z2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article305-320application/pdfhttp://dx.doi.org/10.5540/tema.2016.017.03.0305TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 17, n. 3, p. 305-320, 2016.1677-19662179-8451http://hdl.handle.net/11449/21220610.5540/tema.2016.017.03.0305S2179-84512016000300305S2179-84512016000300305.pdfSciELOreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTEMA (São Carlos)info:eu-repo/semantics/openAccess2024-01-07T06:23:21Zoai:repositorio.unesp.br:11449/212206Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-01-07T06:23:21Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
title |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
spellingShingle |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry Poltroniere, S.c. [UNESP] integrated problem cutting stock problem lot sizing problem paper industry Problema integrado problema de corte de estoque problema de dimensionamento de lotes indústria de papel |
title_short |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
title_full |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
title_fullStr |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
title_full_unstemmed |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
title_sort |
Optimization of an Integrated Lot Sizing and Cutting Stock Problem in the Paper Industry |
author |
Poltroniere, S.c. [UNESP] |
author_facet |
Poltroniere, S.c. [UNESP] Araujo, S.a. [UNESP] Poldi, K.c. |
author_role |
author |
author2 |
Araujo, S.a. [UNESP] Poldi, K.c. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Poltroniere, S.c. [UNESP] Araujo, S.a. [UNESP] Poldi, K.c. |
dc.subject.por.fl_str_mv |
integrated problem cutting stock problem lot sizing problem paper industry Problema integrado problema de corte de estoque problema de dimensionamento de lotes indústria de papel |
topic |
integrated problem cutting stock problem lot sizing problem paper industry Problema integrado problema de corte de estoque problema de dimensionamento de lotes indústria de papel |
description |
Two important optimization problems occur in the planning and production scheduling inpaper industries: the lot sizing problem and the cutting stock problem. The lot sizing problem must determine the quantity of jumbos of different types of paper to be produced in each machine over a finite planning horizon. These jumbos are then cut in order to meet the demand of items for each period. In this paper, we deal with the integration of these two problems, aiming to minimize costs of production and inventory of jumbos, as well as the trim loss of paper generated during the cutting process. Two mathematical models for the integrated problem are considered, and these models are solved both heuristically and using an optimization package. Attempting to get lower bounds for the problem, relaxed versions of the models also have been solved. Finally, computational experiments are presented and discussed. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 2021-07-14T10:36:19Z 2021-07-14T10:36:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.5540/tema.2016.017.03.0305 TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 17, n. 3, p. 305-320, 2016. 1677-1966 2179-8451 http://hdl.handle.net/11449/212206 10.5540/tema.2016.017.03.0305 S2179-84512016000300305 S2179-84512016000300305.pdf |
url |
http://dx.doi.org/10.5540/tema.2016.017.03.0305 http://hdl.handle.net/11449/212206 |
identifier_str_mv |
TEMA (São Carlos). Sociedade Brasileira de Matemática Aplicada e Computacional, v. 17, n. 3, p. 305-320, 2016. 1677-1966 2179-8451 10.5540/tema.2016.017.03.0305 S2179-84512016000300305 S2179-84512016000300305.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
TEMA (São Carlos) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
305-320 application/pdf |
dc.publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
publisher.none.fl_str_mv |
Sociedade Brasileira de Matemática Aplicada e Computacional |
dc.source.none.fl_str_mv |
SciELO reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483780486692864 |