Failure probability metric by machine learning for online risk assessment in distribution networks

Bibliographic Details
Main Author: Leite, Jonatas Boas [UNESP]
Publication Date: 2017
Other Authors: Mantovani, Jose Roberto Sanches [UNESP], Dokic, Tatjana, Yan, Qin, Chen, Po-Chen, Kezunovic, Mladen
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/ISGT-LA.2017.8126683
http://hdl.handle.net/11449/179653
Summary: The risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform.
id UNSP_595e01a3589aeb7239f663b97428de3f
oai_identifier_str oai:repositorio.unesp.br:11449/179653
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Failure probability metric by machine learning for online risk assessment in distribution networksElectricity supply industryFailure probabilityGeographic information systemsPower distributionRisk analysisThe risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform.Dep. of Electrical Engineering São Paulo State University-UNESPDep. of Electrical and Computer Engineering Texas AandM UniversityDep. of Electrical Engineering São Paulo State University-UNESPUniversidade Estadual Paulista (Unesp)Texas AandM UniversityLeite, Jonatas Boas [UNESP]Mantovani, Jose Roberto Sanches [UNESP]Dokic, TatjanaYan, QinChen, Po-ChenKezunovic, Mladen2018-12-11T17:36:12Z2018-12-11T17:36:12Z2017-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1-6http://dx.doi.org/10.1109/ISGT-LA.2017.81266832017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, v. 2017-January, p. 1-6.http://hdl.handle.net/11449/17965310.1109/ISGT-LA.2017.81266832-s2.0-85043459631Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017info:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/179653Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:11:55Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Failure probability metric by machine learning for online risk assessment in distribution networks
title Failure probability metric by machine learning for online risk assessment in distribution networks
spellingShingle Failure probability metric by machine learning for online risk assessment in distribution networks
Leite, Jonatas Boas [UNESP]
Electricity supply industry
Failure probability
Geographic information systems
Power distribution
Risk analysis
title_short Failure probability metric by machine learning for online risk assessment in distribution networks
title_full Failure probability metric by machine learning for online risk assessment in distribution networks
title_fullStr Failure probability metric by machine learning for online risk assessment in distribution networks
title_full_unstemmed Failure probability metric by machine learning for online risk assessment in distribution networks
title_sort Failure probability metric by machine learning for online risk assessment in distribution networks
author Leite, Jonatas Boas [UNESP]
author_facet Leite, Jonatas Boas [UNESP]
Mantovani, Jose Roberto Sanches [UNESP]
Dokic, Tatjana
Yan, Qin
Chen, Po-Chen
Kezunovic, Mladen
author_role author
author2 Mantovani, Jose Roberto Sanches [UNESP]
Dokic, Tatjana
Yan, Qin
Chen, Po-Chen
Kezunovic, Mladen
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Texas AandM University
dc.contributor.author.fl_str_mv Leite, Jonatas Boas [UNESP]
Mantovani, Jose Roberto Sanches [UNESP]
Dokic, Tatjana
Yan, Qin
Chen, Po-Chen
Kezunovic, Mladen
dc.subject.por.fl_str_mv Electricity supply industry
Failure probability
Geographic information systems
Power distribution
Risk analysis
topic Electricity supply industry
Failure probability
Geographic information systems
Power distribution
Risk analysis
description The risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform.
publishDate 2017
dc.date.none.fl_str_mv 2017-12-01
2018-12-11T17:36:12Z
2018-12-11T17:36:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ISGT-LA.2017.8126683
2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, v. 2017-January, p. 1-6.
http://hdl.handle.net/11449/179653
10.1109/ISGT-LA.2017.8126683
2-s2.0-85043459631
url http://dx.doi.org/10.1109/ISGT-LA.2017.8126683
http://hdl.handle.net/11449/179653
identifier_str_mv 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, v. 2017-January, p. 1-6.
10.1109/ISGT-LA.2017.8126683
2-s2.0-85043459631
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1-6
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483822763180032