Failure probability metric by machine learning for online risk assessment in distribution networks
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | , , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1109/ISGT-LA.2017.8126683 http://hdl.handle.net/11449/179653 |
Summary: | The risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform. |
id |
UNSP_595e01a3589aeb7239f663b97428de3f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179653 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Failure probability metric by machine learning for online risk assessment in distribution networksElectricity supply industryFailure probabilityGeographic information systemsPower distributionRisk analysisThe risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform.Dep. of Electrical Engineering São Paulo State University-UNESPDep. of Electrical and Computer Engineering Texas AandM UniversityDep. of Electrical Engineering São Paulo State University-UNESPUniversidade Estadual Paulista (Unesp)Texas AandM UniversityLeite, Jonatas Boas [UNESP]Mantovani, Jose Roberto Sanches [UNESP]Dokic, TatjanaYan, QinChen, Po-ChenKezunovic, Mladen2018-12-11T17:36:12Z2018-12-11T17:36:12Z2017-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1-6http://dx.doi.org/10.1109/ISGT-LA.2017.81266832017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, v. 2017-January, p. 1-6.http://hdl.handle.net/11449/17965310.1109/ISGT-LA.2017.81266832-s2.0-85043459631Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017info:eu-repo/semantics/openAccess2024-07-04T19:11:55Zoai:repositorio.unesp.br:11449/179653Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T19:11:55Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Failure probability metric by machine learning for online risk assessment in distribution networks |
title |
Failure probability metric by machine learning for online risk assessment in distribution networks |
spellingShingle |
Failure probability metric by machine learning for online risk assessment in distribution networks Leite, Jonatas Boas [UNESP] Electricity supply industry Failure probability Geographic information systems Power distribution Risk analysis |
title_short |
Failure probability metric by machine learning for online risk assessment in distribution networks |
title_full |
Failure probability metric by machine learning for online risk assessment in distribution networks |
title_fullStr |
Failure probability metric by machine learning for online risk assessment in distribution networks |
title_full_unstemmed |
Failure probability metric by machine learning for online risk assessment in distribution networks |
title_sort |
Failure probability metric by machine learning for online risk assessment in distribution networks |
author |
Leite, Jonatas Boas [UNESP] |
author_facet |
Leite, Jonatas Boas [UNESP] Mantovani, Jose Roberto Sanches [UNESP] Dokic, Tatjana Yan, Qin Chen, Po-Chen Kezunovic, Mladen |
author_role |
author |
author2 |
Mantovani, Jose Roberto Sanches [UNESP] Dokic, Tatjana Yan, Qin Chen, Po-Chen Kezunovic, Mladen |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Texas AandM University |
dc.contributor.author.fl_str_mv |
Leite, Jonatas Boas [UNESP] Mantovani, Jose Roberto Sanches [UNESP] Dokic, Tatjana Yan, Qin Chen, Po-Chen Kezunovic, Mladen |
dc.subject.por.fl_str_mv |
Electricity supply industry Failure probability Geographic information systems Power distribution Risk analysis |
topic |
Electricity supply industry Failure probability Geographic information systems Power distribution Risk analysis |
description |
The risk assessment approach is useful for monitoring and supervisory control because it provides distribution operator with the capability to quantify the tradeoff between reliability and economic performance. The risk assessment determines the likelihood of something going wrong in a distribution network through the failure probability metric. To deal with the massive variety of information required in the calculation of failure probability we propose a data mining approach. The proposed approach incorporates weather, asset and outage information for characterizing the risk in a distribution network section via GIS platform. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12-01 2018-12-11T17:36:12Z 2018-12-11T17:36:12Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISGT-LA.2017.8126683 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, v. 2017-January, p. 1-6. http://hdl.handle.net/11449/179653 10.1109/ISGT-LA.2017.8126683 2-s2.0-85043459631 |
url |
http://dx.doi.org/10.1109/ISGT-LA.2017.8126683 http://hdl.handle.net/11449/179653 |
identifier_str_mv |
2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017, v. 2017-January, p. 1-6. 10.1109/ISGT-LA.2017.8126683 2-s2.0-85043459631 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1-6 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483822763180032 |