Statistical properties for an open oval billiard: An investigation of the escaping basins

Bibliographic Details
Main Author: Hansen, Matheus
Publication Date: 2018
Other Authors: da Costa, Diogo Ricardo [UNESP], Caldas, Iberê L., Leonel, Edson D. [UNESP]
Format: Other
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1016/j.chaos.2017.11.036
http://hdl.handle.net/11449/170464
Summary: Statistical properties for recurrent and non recurrent escaping particles in an oval billiard with holes in the boundary are investigated. We determine where to place the holes and where to launch particles in order to maximize or minimize the escape measurement. Initially, we introduce a fixed hole in the billiard boundary, injecting particles through the hole and analyzing the survival probability of the particles inside of the billiard. We show there are preferential regions to observe the escape of particles. Next, with two holes in the boundary, we obtain the escape basins of the particles and show the influence of the stickiness and the small chains of islands along the phase space in the escape of particles. Finally, we discuss the relation between the escape basins boundary, the uncertainty about the boundary points, the fractal dimension of them and the so called Wada property that appears when three holes are introduced in the boundary.
id UNSP_50cfbd6bcb5932d1b9e942e963adf014
oai_identifier_str oai:repositorio.unesp.br:11449/170464
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Statistical properties for an open oval billiard: An investigation of the escaping basinsClassical billiardsEscape of particlesFractal boundariesStatistical properties for recurrent and non recurrent escaping particles in an oval billiard with holes in the boundary are investigated. We determine where to place the holes and where to launch particles in order to maximize or minimize the escape measurement. Initially, we introduce a fixed hole in the billiard boundary, injecting particles through the hole and analyzing the survival probability of the particles inside of the billiard. We show there are preferential regions to observe the escape of particles. Next, with two holes in the boundary, we obtain the escape basins of the particles and show the influence of the stickiness and the small chains of islands along the phase space in the escape of particles. Finally, we discuss the relation between the escape basins boundary, the uncertainty about the boundary points, the fractal dimension of them and the so called Wada property that appears when three holes are introduced in the boundary.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Instituto de Física da Universidade de São Paulo Cidade Universitária, Rua do Matão, Travessa R 187Departamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela VistaDepartamento de Física UNESP - Univ Estadual Paulista, Av. 24A, 1515, Bela VistaFAPESP: 2011/19296-1FAPESP: 2012/23688-5CAPES: 2013/22764-2FAPESP: 2014/00334-9FAPESP: 2017/14414-2CNPq: 303707/2015-1CNPq: 306034/2015-8Universidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Hansen, Matheusda Costa, Diogo Ricardo [UNESP]Caldas, Iberê L.Leonel, Edson D. [UNESP]2018-12-11T16:50:56Z2018-12-11T16:50:56Z2018-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/other355-362application/pdfhttp://dx.doi.org/10.1016/j.chaos.2017.11.036Chaos, Solitons and Fractals, v. 106, p. 355-362.0960-0779http://hdl.handle.net/11449/17046410.1016/j.chaos.2017.11.0362-s2.0-850380070202-s2.0-85038007020.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaos, Solitons and Fractals0,678info:eu-repo/semantics/openAccess2024-01-29T06:24:13Zoai:repositorio.unesp.br:11449/170464Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-01-29T06:24:13Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Statistical properties for an open oval billiard: An investigation of the escaping basins
title Statistical properties for an open oval billiard: An investigation of the escaping basins
spellingShingle Statistical properties for an open oval billiard: An investigation of the escaping basins
Hansen, Matheus
Classical billiards
Escape of particles
Fractal boundaries
title_short Statistical properties for an open oval billiard: An investigation of the escaping basins
title_full Statistical properties for an open oval billiard: An investigation of the escaping basins
title_fullStr Statistical properties for an open oval billiard: An investigation of the escaping basins
title_full_unstemmed Statistical properties for an open oval billiard: An investigation of the escaping basins
title_sort Statistical properties for an open oval billiard: An investigation of the escaping basins
author Hansen, Matheus
author_facet Hansen, Matheus
da Costa, Diogo Ricardo [UNESP]
Caldas, Iberê L.
Leonel, Edson D. [UNESP]
author_role author
author2 da Costa, Diogo Ricardo [UNESP]
Caldas, Iberê L.
Leonel, Edson D. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade de São Paulo (USP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Hansen, Matheus
da Costa, Diogo Ricardo [UNESP]
Caldas, Iberê L.
Leonel, Edson D. [UNESP]
dc.subject.por.fl_str_mv Classical billiards
Escape of particles
Fractal boundaries
topic Classical billiards
Escape of particles
Fractal boundaries
description Statistical properties for recurrent and non recurrent escaping particles in an oval billiard with holes in the boundary are investigated. We determine where to place the holes and where to launch particles in order to maximize or minimize the escape measurement. Initially, we introduce a fixed hole in the billiard boundary, injecting particles through the hole and analyzing the survival probability of the particles inside of the billiard. We show there are preferential regions to observe the escape of particles. Next, with two holes in the boundary, we obtain the escape basins of the particles and show the influence of the stickiness and the small chains of islands along the phase space in the escape of particles. Finally, we discuss the relation between the escape basins boundary, the uncertainty about the boundary points, the fractal dimension of them and the so called Wada property that appears when three holes are introduced in the boundary.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T16:50:56Z
2018-12-11T16:50:56Z
2018-01-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/other
format other
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.chaos.2017.11.036
Chaos, Solitons and Fractals, v. 106, p. 355-362.
0960-0779
http://hdl.handle.net/11449/170464
10.1016/j.chaos.2017.11.036
2-s2.0-85038007020
2-s2.0-85038007020.pdf
url http://dx.doi.org/10.1016/j.chaos.2017.11.036
http://hdl.handle.net/11449/170464
identifier_str_mv Chaos, Solitons and Fractals, v. 106, p. 355-362.
0960-0779
10.1016/j.chaos.2017.11.036
2-s2.0-85038007020
2-s2.0-85038007020.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos, Solitons and Fractals
0,678
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 355-362
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484836509679616