Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , , , , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.3390/nanoenergyadv4010006 https://hdl.handle.net/11449/302074 |
Summary: | Developing metal-free electrodes for prototypes of bio-based devices is an essential step in producing non-toxic components for implantable devices and wearables. In particular, the advancement in self-powered devices is a hot topic for several applications due to the possibility of creating free-battery devices and sensors. In this paper, the modification of bacterial cellulose by the progressive incorporation of carbon black (a conductive filler) was explored as a prototype for bio-based electrodes for triboelectric nanogenerators. This process was controlled by the percolation pathways’ activation through the contact of carbon black grains with the bacterial cellulose membrane, which represents a critical step in the overall process of optimization in the power output performance, reaching an open circuit voltage value of 102.3 V, short circuit current of 2 μA, and power density of 4.89 μW/cm2. |
id |
UNSP_4bc01f0121a9f5a66b3549f6e745823a |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/302074 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Blackbacterial celluloseEcoflexenergy harvestingtriboelectricDeveloping metal-free electrodes for prototypes of bio-based devices is an essential step in producing non-toxic components for implantable devices and wearables. In particular, the advancement in self-powered devices is a hot topic for several applications due to the possibility of creating free-battery devices and sensors. In this paper, the modification of bacterial cellulose by the progressive incorporation of carbon black (a conductive filler) was explored as a prototype for bio-based electrodes for triboelectric nanogenerators. This process was controlled by the percolation pathways’ activation through the contact of carbon black grains with the bacterial cellulose membrane, which represents a critical step in the overall process of optimization in the power output performance, reaching an open circuit voltage value of 102.3 V, short circuit current of 2 μA, and power density of 4.89 μW/cm2.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Ciência e Tecnologia do Estado de PernambucoFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado da BahiaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institute of Materials Science Universidade Federal do Vale do São Francisco—UNIVASF, BAInstituto de Química de São Carlos Universidade de São Paulo—USP, SPInstitute of Chemistry São Paulo State University—UNESP, SPNúcleo de Espectroscopia e Estrutura Molecular (NEEM) Departament of Chemistry Universidade Federal de Juiz de Fora—UFJF, MGBiopolymers and Biomaterials Laboratory (BioPolMat) Universidade de Araraquara—UNIARA, SPInstitute of Chemistry São Paulo State University—UNESP, SPCNPq: 303997/2021-4CNPq: 309614/2021-0CNPq: 409215/2022-8Universidade Federal do Vale do São Francisco—UNIVASFUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Universidade Federal de Juiz de Fora—UFJFUniversidade de Araraquara—UNIARAFreire, Andre L.Lima, Lais R.Candido, Iuri C. M.Silva, Luygui G. [UNESP]Ribeiro, Sidney J. L. [UNESP]Carrilho, EmanuelOliveira, Thais L.de Oliveira, Luiz Fernando C.Barud, Hernane S.de Oliveira, Helinando P.2025-04-29T19:13:32Z2024-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article110-121http://dx.doi.org/10.3390/nanoenergyadv4010006Nanoenergy Advances, v. 4, n. 1, p. 110-121, 2024.2673-706Xhttps://hdl.handle.net/11449/30207410.3390/nanoenergyadv40100062-s2.0-85205259100Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNanoenergy Advancesinfo:eu-repo/semantics/openAccess2025-05-28T05:05:38Zoai:repositorio.unesp.br:11449/302074Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-05-28T05:05:38Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
title |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
spellingShingle |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black Freire, Andre L. bacterial cellulose Ecoflex energy harvesting triboelectric |
title_short |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
title_full |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
title_fullStr |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
title_full_unstemmed |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
title_sort |
Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black |
author |
Freire, Andre L. |
author_facet |
Freire, Andre L. Lima, Lais R. Candido, Iuri C. M. Silva, Luygui G. [UNESP] Ribeiro, Sidney J. L. [UNESP] Carrilho, Emanuel Oliveira, Thais L. de Oliveira, Luiz Fernando C. Barud, Hernane S. de Oliveira, Helinando P. |
author_role |
author |
author2 |
Lima, Lais R. Candido, Iuri C. M. Silva, Luygui G. [UNESP] Ribeiro, Sidney J. L. [UNESP] Carrilho, Emanuel Oliveira, Thais L. de Oliveira, Luiz Fernando C. Barud, Hernane S. de Oliveira, Helinando P. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal do Vale do São Francisco—UNIVASF Universidade de São Paulo (USP) Universidade Estadual Paulista (UNESP) Universidade Federal de Juiz de Fora—UFJF Universidade de Araraquara—UNIARA |
dc.contributor.author.fl_str_mv |
Freire, Andre L. Lima, Lais R. Candido, Iuri C. M. Silva, Luygui G. [UNESP] Ribeiro, Sidney J. L. [UNESP] Carrilho, Emanuel Oliveira, Thais L. de Oliveira, Luiz Fernando C. Barud, Hernane S. de Oliveira, Helinando P. |
dc.subject.por.fl_str_mv |
bacterial cellulose Ecoflex energy harvesting triboelectric |
topic |
bacterial cellulose Ecoflex energy harvesting triboelectric |
description |
Developing metal-free electrodes for prototypes of bio-based devices is an essential step in producing non-toxic components for implantable devices and wearables. In particular, the advancement in self-powered devices is a hot topic for several applications due to the possibility of creating free-battery devices and sensors. In this paper, the modification of bacterial cellulose by the progressive incorporation of carbon black (a conductive filler) was explored as a prototype for bio-based electrodes for triboelectric nanogenerators. This process was controlled by the percolation pathways’ activation through the contact of carbon black grains with the bacterial cellulose membrane, which represents a critical step in the overall process of optimization in the power output performance, reaching an open circuit voltage value of 102.3 V, short circuit current of 2 μA, and power density of 4.89 μW/cm2. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-03-01 2025-04-29T19:13:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.3390/nanoenergyadv4010006 Nanoenergy Advances, v. 4, n. 1, p. 110-121, 2024. 2673-706X https://hdl.handle.net/11449/302074 10.3390/nanoenergyadv4010006 2-s2.0-85205259100 |
url |
http://dx.doi.org/10.3390/nanoenergyadv4010006 https://hdl.handle.net/11449/302074 |
identifier_str_mv |
Nanoenergy Advances, v. 4, n. 1, p. 110-121, 2024. 2673-706X 10.3390/nanoenergyadv4010006 2-s2.0-85205259100 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nanoenergy Advances |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
110-121 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482406389710848 |