Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black

Bibliographic Details
Main Author: Freire, Andre L.
Publication Date: 2024
Other Authors: Lima, Lais R., Candido, Iuri C. M., Silva, Luygui G. [UNESP], Ribeiro, Sidney J. L. [UNESP], Carrilho, Emanuel, Oliveira, Thais L., de Oliveira, Luiz Fernando C., Barud, Hernane S., de Oliveira, Helinando P.
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.3390/nanoenergyadv4010006
https://hdl.handle.net/11449/302074
Summary: Developing metal-free electrodes for prototypes of bio-based devices is an essential step in producing non-toxic components for implantable devices and wearables. In particular, the advancement in self-powered devices is a hot topic for several applications due to the possibility of creating free-battery devices and sensors. In this paper, the modification of bacterial cellulose by the progressive incorporation of carbon black (a conductive filler) was explored as a prototype for bio-based electrodes for triboelectric nanogenerators. This process was controlled by the percolation pathways’ activation through the contact of carbon black grains with the bacterial cellulose membrane, which represents a critical step in the overall process of optimization in the power output performance, reaching an open circuit voltage value of 102.3 V, short circuit current of 2 μA, and power density of 4.89 μW/cm2.
id UNSP_4bc01f0121a9f5a66b3549f6e745823a
oai_identifier_str oai:repositorio.unesp.br:11449/302074
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Blackbacterial celluloseEcoflexenergy harvestingtriboelectricDeveloping metal-free electrodes for prototypes of bio-based devices is an essential step in producing non-toxic components for implantable devices and wearables. In particular, the advancement in self-powered devices is a hot topic for several applications due to the possibility of creating free-battery devices and sensors. In this paper, the modification of bacterial cellulose by the progressive incorporation of carbon black (a conductive filler) was explored as a prototype for bio-based electrodes for triboelectric nanogenerators. This process was controlled by the percolation pathways’ activation through the contact of carbon black grains with the bacterial cellulose membrane, which represents a critical step in the overall process of optimization in the power output performance, reaching an open circuit voltage value of 102.3 V, short circuit current of 2 μA, and power density of 4.89 μW/cm2.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Ciência e Tecnologia do Estado de PernambucoFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado da BahiaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Institute of Materials Science Universidade Federal do Vale do São Francisco—UNIVASF, BAInstituto de Química de São Carlos Universidade de São Paulo—USP, SPInstitute of Chemistry São Paulo State University—UNESP, SPNúcleo de Espectroscopia e Estrutura Molecular (NEEM) Departament of Chemistry Universidade Federal de Juiz de Fora—UFJF, MGBiopolymers and Biomaterials Laboratory (BioPolMat) Universidade de Araraquara—UNIARA, SPInstitute of Chemistry São Paulo State University—UNESP, SPCNPq: 303997/2021-4CNPq: 309614/2021-0CNPq: 409215/2022-8Universidade Federal do Vale do São Francisco—UNIVASFUniversidade de São Paulo (USP)Universidade Estadual Paulista (UNESP)Universidade Federal de Juiz de Fora—UFJFUniversidade de Araraquara—UNIARAFreire, Andre L.Lima, Lais R.Candido, Iuri C. M.Silva, Luygui G. [UNESP]Ribeiro, Sidney J. L. [UNESP]Carrilho, EmanuelOliveira, Thais L.de Oliveira, Luiz Fernando C.Barud, Hernane S.de Oliveira, Helinando P.2025-04-29T19:13:32Z2024-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article110-121http://dx.doi.org/10.3390/nanoenergyadv4010006Nanoenergy Advances, v. 4, n. 1, p. 110-121, 2024.2673-706Xhttps://hdl.handle.net/11449/30207410.3390/nanoenergyadv40100062-s2.0-85205259100Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNanoenergy Advancesinfo:eu-repo/semantics/openAccess2025-05-28T05:05:38Zoai:repositorio.unesp.br:11449/302074Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-05-28T05:05:38Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
title Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
spellingShingle Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
Freire, Andre L.
bacterial cellulose
Ecoflex
energy harvesting
triboelectric
title_short Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
title_full Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
title_fullStr Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
title_full_unstemmed Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
title_sort Metal-Free, Bio-Triboelectric Nanogenerator Based on a Single Electrode of Bacterial Cellulose Modified with Carbon Black
author Freire, Andre L.
author_facet Freire, Andre L.
Lima, Lais R.
Candido, Iuri C. M.
Silva, Luygui G. [UNESP]
Ribeiro, Sidney J. L. [UNESP]
Carrilho, Emanuel
Oliveira, Thais L.
de Oliveira, Luiz Fernando C.
Barud, Hernane S.
de Oliveira, Helinando P.
author_role author
author2 Lima, Lais R.
Candido, Iuri C. M.
Silva, Luygui G. [UNESP]
Ribeiro, Sidney J. L. [UNESP]
Carrilho, Emanuel
Oliveira, Thais L.
de Oliveira, Luiz Fernando C.
Barud, Hernane S.
de Oliveira, Helinando P.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal do Vale do São Francisco—UNIVASF
Universidade de São Paulo (USP)
Universidade Estadual Paulista (UNESP)
Universidade Federal de Juiz de Fora—UFJF
Universidade de Araraquara—UNIARA
dc.contributor.author.fl_str_mv Freire, Andre L.
Lima, Lais R.
Candido, Iuri C. M.
Silva, Luygui G. [UNESP]
Ribeiro, Sidney J. L. [UNESP]
Carrilho, Emanuel
Oliveira, Thais L.
de Oliveira, Luiz Fernando C.
Barud, Hernane S.
de Oliveira, Helinando P.
dc.subject.por.fl_str_mv bacterial cellulose
Ecoflex
energy harvesting
triboelectric
topic bacterial cellulose
Ecoflex
energy harvesting
triboelectric
description Developing metal-free electrodes for prototypes of bio-based devices is an essential step in producing non-toxic components for implantable devices and wearables. In particular, the advancement in self-powered devices is a hot topic for several applications due to the possibility of creating free-battery devices and sensors. In this paper, the modification of bacterial cellulose by the progressive incorporation of carbon black (a conductive filler) was explored as a prototype for bio-based electrodes for triboelectric nanogenerators. This process was controlled by the percolation pathways’ activation through the contact of carbon black grains with the bacterial cellulose membrane, which represents a critical step in the overall process of optimization in the power output performance, reaching an open circuit voltage value of 102.3 V, short circuit current of 2 μA, and power density of 4.89 μW/cm2.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-01
2025-04-29T19:13:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.3390/nanoenergyadv4010006
Nanoenergy Advances, v. 4, n. 1, p. 110-121, 2024.
2673-706X
https://hdl.handle.net/11449/302074
10.3390/nanoenergyadv4010006
2-s2.0-85205259100
url http://dx.doi.org/10.3390/nanoenergyadv4010006
https://hdl.handle.net/11449/302074
identifier_str_mv Nanoenergy Advances, v. 4, n. 1, p. 110-121, 2024.
2673-706X
10.3390/nanoenergyadv4010006
2-s2.0-85205259100
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nanoenergy Advances
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 110-121
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482406389710848