Export Ready — 

A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors

Bibliographic Details
Main Author: Freitas, Arthur V. [UNESP]
Publication Date: 2024
Other Authors: Alves, Gabriel G. B. [UNESP], Paschoal, Giovana M. A., Lafargue-dit-Hauret, William, Hiorns, Roger C., Bégué, Didier, Batagin-Neto, Augusto [UNESP]
Format: Article
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/s10853-024-09811-1
https://hdl.handle.net/11449/297998
Summary: Over the last two decades, the demand for efficient and sustainable ways of producing electricity increased, motivating the development of high-efficient photovoltaic devices. In this context, bulk heterojunction organic solar cells based on non-fullerene acceptor (NFA) molecules have shown promising performances due to their versatility of synthesis, processing advantages, good stability to sunlight exposition, and high efficiencies (up to 18%). In particular, the high chemical versatility of these materials allows the synthesis of a number of distinct NFAs with varied performances, so that theoretical studies are essential to guide the prospection of new optimized compounds. In the present study, density functional theory-based (DFT) calculations were conducted to investigate the electronic structure of well-known building blocks of NFA, to assess how the fusion of these units influences the optoelectronic properties of the NFAs cores. The results allow us to identify relevant patterns for the design of optimized systems and define dominant sites for charge transfer processes, offering novel insights into the interpretation of operational mechanisms.
id UNSP_343bb975e7ac0e3c39b6dc4cade1408f
oai_identifier_str oai:repositorio.unesp.br:11449/297998
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptorsOver the last two decades, the demand for efficient and sustainable ways of producing electricity increased, motivating the development of high-efficient photovoltaic devices. In this context, bulk heterojunction organic solar cells based on non-fullerene acceptor (NFA) molecules have shown promising performances due to their versatility of synthesis, processing advantages, good stability to sunlight exposition, and high efficiencies (up to 18%). In particular, the high chemical versatility of these materials allows the synthesis of a number of distinct NFAs with varied performances, so that theoretical studies are essential to guide the prospection of new optimized compounds. In the present study, density functional theory-based (DFT) calculations were conducted to investigate the electronic structure of well-known building blocks of NFA, to assess how the fusion of these units influences the optoelectronic properties of the NFAs cores. The results allow us to identify relevant patterns for the design of optimized systems and define dominant sites for charge transfer processes, offering novel insights into the interpretation of operational mechanisms.Financiadora de Estudos e ProjetosConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Grand Équipement National De Calcul IntensifCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)H2020 Marie Skłodowska-Curie ActionsInstitute of Sciences and Engineering São Paulo State University (UNESP), SPSchool of Sciences POSMAT São Paulo State University (UNESP), SPInstitut des Science Analytiques et Physico-Chimie pour l’Environnement et les Matériaux CNRS Univ Pau and Pays AdourInstitute of Sciences and Engineering São Paulo State University (UNESP), SPSchool of Sciences POSMAT São Paulo State University (UNESP), SPFinanciadora de Estudos e Projetos: 01.22.0289.00 - 0034/21CNPq: 1566-1/2020-PIBICFAPESP: 20/12356-8Grand Équipement National De Calcul Intensif: 2022-102485CNPq: 310390/2021-4CNPq: 3940-4/2021-PIBICCAPES: 88887.695844/2022-00CAPES: 88887.817533/2022-00H2020 Marie Skłodowska-Curie Actions: 945416Universidade Estadual Paulista (UNESP)CNRS Univ Pau and Pays AdourFreitas, Arthur V. [UNESP]Alves, Gabriel G. B. [UNESP]Paschoal, Giovana M. A.Lafargue-dit-Hauret, WilliamHiorns, Roger C.Bégué, DidierBatagin-Neto, Augusto [UNESP]2025-04-29T18:35:51Z2024-06-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article10888-10903http://dx.doi.org/10.1007/s10853-024-09811-1Journal of Materials Science, v. 59, n. 24, p. 10888-10903, 2024.1573-48030022-2461https://hdl.handle.net/11449/29799810.1007/s10853-024-09811-12-s2.0-85195409933Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Materials Scienceinfo:eu-repo/semantics/openAccess2025-04-30T14:05:35Zoai:repositorio.unesp.br:11449/297998Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:05:35Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
title A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
spellingShingle A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
Freitas, Arthur V. [UNESP]
title_short A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
title_full A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
title_fullStr A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
title_full_unstemmed A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
title_sort A DFT bottom-up approach on non-fullerene acceptors: what makes highly efficient acceptors
author Freitas, Arthur V. [UNESP]
author_facet Freitas, Arthur V. [UNESP]
Alves, Gabriel G. B. [UNESP]
Paschoal, Giovana M. A.
Lafargue-dit-Hauret, William
Hiorns, Roger C.
Bégué, Didier
Batagin-Neto, Augusto [UNESP]
author_role author
author2 Alves, Gabriel G. B. [UNESP]
Paschoal, Giovana M. A.
Lafargue-dit-Hauret, William
Hiorns, Roger C.
Bégué, Didier
Batagin-Neto, Augusto [UNESP]
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
CNRS Univ Pau and Pays Adour
dc.contributor.author.fl_str_mv Freitas, Arthur V. [UNESP]
Alves, Gabriel G. B. [UNESP]
Paschoal, Giovana M. A.
Lafargue-dit-Hauret, William
Hiorns, Roger C.
Bégué, Didier
Batagin-Neto, Augusto [UNESP]
description Over the last two decades, the demand for efficient and sustainable ways of producing electricity increased, motivating the development of high-efficient photovoltaic devices. In this context, bulk heterojunction organic solar cells based on non-fullerene acceptor (NFA) molecules have shown promising performances due to their versatility of synthesis, processing advantages, good stability to sunlight exposition, and high efficiencies (up to 18%). In particular, the high chemical versatility of these materials allows the synthesis of a number of distinct NFAs with varied performances, so that theoretical studies are essential to guide the prospection of new optimized compounds. In the present study, density functional theory-based (DFT) calculations were conducted to investigate the electronic structure of well-known building blocks of NFA, to assess how the fusion of these units influences the optoelectronic properties of the NFAs cores. The results allow us to identify relevant patterns for the design of optimized systems and define dominant sites for charge transfer processes, offering novel insights into the interpretation of operational mechanisms.
publishDate 2024
dc.date.none.fl_str_mv 2024-06-01
2025-04-29T18:35:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s10853-024-09811-1
Journal of Materials Science, v. 59, n. 24, p. 10888-10903, 2024.
1573-4803
0022-2461
https://hdl.handle.net/11449/297998
10.1007/s10853-024-09811-1
2-s2.0-85195409933
url http://dx.doi.org/10.1007/s10853-024-09811-1
https://hdl.handle.net/11449/297998
identifier_str_mv Journal of Materials Science, v. 59, n. 24, p. 10888-10903, 2024.
1573-4803
0022-2461
10.1007/s10853-024-09811-1
2-s2.0-85195409933
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Materials Science
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 10888-10903
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482721388232704