Rank diffusion for context-based image retrieval
| Main Author: | |
|---|---|
| Publication Date: | 2016 |
| Other Authors: | |
| Format: | Conference object |
| Language: | eng |
| Source: | Repositório Institucional da UNESP |
| Download full: | http://dx.doi.org/10.1145/2911996.2912060 http://hdl.handle.net/11449/168817 |
Summary: | This paper presents an efficient diffusion-based re-ranking approach. The proposed method propagates contextual information defined in terms of top-ranked objects of ranked lists in a diffusion process. That makes the method suitable for large scale real-world collections. Experiments were conducted considering public image collections, several descriptors, and comparisons with state-of-the-art methods. Experimental results demonstrate that the proposed method provides high effectiveness gains with low computational costs. |
| id |
UNSP_23bede04d6554de0d8db3ab0efba8b8f |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/168817 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Rank diffusion for context-based image retrievalContent-based image retrievalRank diffusion processUnsupervised distance learningThis paper presents an efficient diffusion-based re-ranking approach. The proposed method propagates contextual information defined in terms of top-ranked objects of ranked lists in a diffusion process. That makes the method suitable for large scale real-world collections. Experiments were conducted considering public image collections, several descriptors, and comparisons with state-of-the-art methods. Experimental results demonstrate that the proposed method provides high effectiveness gains with low computational costs.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Dept. of Statistic Applied Math. and Computing Universidade Estadual Paulista (UNESP)Recod Lab - Institute of Computing University of Campinas (UNICAMP)Dept. of Statistic Applied Math. and Computing Universidade Estadual Paulista (UNESP)FAPESP: 2013/08645-0FAPESP: 2013/50169-1CNPq: 306580/2012-8CNPq: 484254/2012-0Universidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Pedronette, Daniel Carlos Guimarães [UNESP]Torres, Ricardo Da S.2018-12-11T16:43:12Z2018-12-11T16:43:12Z2016-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject321-325http://dx.doi.org/10.1145/2911996.2912060ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, p. 321-325.http://hdl.handle.net/11449/16881710.1145/2911996.29120602-s2.0-84978708542Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrievalinfo:eu-repo/semantics/openAccess2021-10-23T21:46:58Zoai:repositorio.unesp.br:11449/168817Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462021-10-23T21:46:58Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Rank diffusion for context-based image retrieval |
| title |
Rank diffusion for context-based image retrieval |
| spellingShingle |
Rank diffusion for context-based image retrieval Pedronette, Daniel Carlos Guimarães [UNESP] Content-based image retrieval Rank diffusion process Unsupervised distance learning |
| title_short |
Rank diffusion for context-based image retrieval |
| title_full |
Rank diffusion for context-based image retrieval |
| title_fullStr |
Rank diffusion for context-based image retrieval |
| title_full_unstemmed |
Rank diffusion for context-based image retrieval |
| title_sort |
Rank diffusion for context-based image retrieval |
| author |
Pedronette, Daniel Carlos Guimarães [UNESP] |
| author_facet |
Pedronette, Daniel Carlos Guimarães [UNESP] Torres, Ricardo Da S. |
| author_role |
author |
| author2 |
Torres, Ricardo Da S. |
| author2_role |
author |
| dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
| dc.contributor.author.fl_str_mv |
Pedronette, Daniel Carlos Guimarães [UNESP] Torres, Ricardo Da S. |
| dc.subject.por.fl_str_mv |
Content-based image retrieval Rank diffusion process Unsupervised distance learning |
| topic |
Content-based image retrieval Rank diffusion process Unsupervised distance learning |
| description |
This paper presents an efficient diffusion-based re-ranking approach. The proposed method propagates contextual information defined in terms of top-ranked objects of ranked lists in a diffusion process. That makes the method suitable for large scale real-world collections. Experiments were conducted considering public image collections, several descriptors, and comparisons with state-of-the-art methods. Experimental results demonstrate that the proposed method provides high effectiveness gains with low computational costs. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-06-06 2018-12-11T16:43:12Z 2018-12-11T16:43:12Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1145/2911996.2912060 ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, p. 321-325. http://hdl.handle.net/11449/168817 10.1145/2911996.2912060 2-s2.0-84978708542 |
| url |
http://dx.doi.org/10.1145/2911996.2912060 http://hdl.handle.net/11449/168817 |
| identifier_str_mv |
ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval, p. 321-325. 10.1145/2911996.2912060 2-s2.0-84978708542 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
ICMR 2016 - Proceedings of the 2016 ACM International Conference on Multimedia Retrieval |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
321-325 |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1834483596033785856 |