Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques

Bibliographic Details
Main Author: Tojeiro, Carlos A. C. [UNESP]
Publication Date: 2024
Other Authors: Lucas, Thiago J. [UNESP], Passos, Leandro A. [UNESP], Rodrigues, Douglas [UNESP], Prado, Simone G. D. [UNESP], Papa, Joao Paulo [UNESP], Da Costa, Kelton A. P. [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1109/IWSSIP62407.2024.10634015
https://hdl.handle.net/11449/309231
Summary: As the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques.
id UNSP_202f22876e741213f0983d0cf2ff22a3
oai_identifier_str oai:repositorio.unesp.br:11449/309231
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling TechniquesCyberattackCybersecurityInternet of ThingsIntrusion DetectionResamplingAs the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques.São Paulo State University Department of ComputingSão Paulo State University Department of ComputingUniversidade Estadual Paulista (UNESP)Tojeiro, Carlos A. C. [UNESP]Lucas, Thiago J. [UNESP]Passos, Leandro A. [UNESP]Rodrigues, Douglas [UNESP]Prado, Simone G. D. [UNESP]Papa, Joao Paulo [UNESP]Da Costa, Kelton A. P. [UNESP]2025-04-29T20:14:54Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IWSSIP62407.2024.10634015International Conference on Systems, Signals, and Image Processing.2157-87022157-8672https://hdl.handle.net/11449/30923110.1109/IWSSIP62407.2024.106340152-s2.0-85202834639Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Conference on Systems, Signals, and Image Processinginfo:eu-repo/semantics/openAccess2025-04-30T13:33:52Zoai:repositorio.unesp.br:11449/309231Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:33:52Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
title Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
spellingShingle Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
Tojeiro, Carlos A. C. [UNESP]
Cyberattack
Cybersecurity
Internet of Things
Intrusion Detection
Resampling
title_short Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
title_full Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
title_fullStr Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
title_full_unstemmed Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
title_sort Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
author Tojeiro, Carlos A. C. [UNESP]
author_facet Tojeiro, Carlos A. C. [UNESP]
Lucas, Thiago J. [UNESP]
Passos, Leandro A. [UNESP]
Rodrigues, Douglas [UNESP]
Prado, Simone G. D. [UNESP]
Papa, Joao Paulo [UNESP]
Da Costa, Kelton A. P. [UNESP]
author_role author
author2 Lucas, Thiago J. [UNESP]
Passos, Leandro A. [UNESP]
Rodrigues, Douglas [UNESP]
Prado, Simone G. D. [UNESP]
Papa, Joao Paulo [UNESP]
Da Costa, Kelton A. P. [UNESP]
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Tojeiro, Carlos A. C. [UNESP]
Lucas, Thiago J. [UNESP]
Passos, Leandro A. [UNESP]
Rodrigues, Douglas [UNESP]
Prado, Simone G. D. [UNESP]
Papa, Joao Paulo [UNESP]
Da Costa, Kelton A. P. [UNESP]
dc.subject.por.fl_str_mv Cyberattack
Cybersecurity
Internet of Things
Intrusion Detection
Resampling
topic Cyberattack
Cybersecurity
Internet of Things
Intrusion Detection
Resampling
description As the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques.
publishDate 2024
dc.date.none.fl_str_mv 2024-01-01
2025-04-29T20:14:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/IWSSIP62407.2024.10634015
International Conference on Systems, Signals, and Image Processing.
2157-8702
2157-8672
https://hdl.handle.net/11449/309231
10.1109/IWSSIP62407.2024.10634015
2-s2.0-85202834639
url http://dx.doi.org/10.1109/IWSSIP62407.2024.10634015
https://hdl.handle.net/11449/309231
identifier_str_mv International Conference on Systems, Signals, and Image Processing.
2157-8702
2157-8672
10.1109/IWSSIP62407.2024.10634015
2-s2.0-85202834639
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Conference on Systems, Signals, and Image Processing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482582914334720