Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , , , , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1109/IWSSIP62407.2024.10634015 https://hdl.handle.net/11449/309231 |
Summary: | As the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques. |
id |
UNSP_202f22876e741213f0983d0cf2ff22a3 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/309231 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling TechniquesCyberattackCybersecurityInternet of ThingsIntrusion DetectionResamplingAs the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques.São Paulo State University Department of ComputingSão Paulo State University Department of ComputingUniversidade Estadual Paulista (UNESP)Tojeiro, Carlos A. C. [UNESP]Lucas, Thiago J. [UNESP]Passos, Leandro A. [UNESP]Rodrigues, Douglas [UNESP]Prado, Simone G. D. [UNESP]Papa, Joao Paulo [UNESP]Da Costa, Kelton A. P. [UNESP]2025-04-29T20:14:54Z2024-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/IWSSIP62407.2024.10634015International Conference on Systems, Signals, and Image Processing.2157-87022157-8672https://hdl.handle.net/11449/30923110.1109/IWSSIP62407.2024.106340152-s2.0-85202834639Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Conference on Systems, Signals, and Image Processinginfo:eu-repo/semantics/openAccess2025-04-30T13:33:52Zoai:repositorio.unesp.br:11449/309231Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T13:33:52Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
title |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
spellingShingle |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques Tojeiro, Carlos A. C. [UNESP] Cyberattack Cybersecurity Internet of Things Intrusion Detection Resampling |
title_short |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
title_full |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
title_fullStr |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
title_full_unstemmed |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
title_sort |
Enhancing Cyberattack Detection in IoT Environments Through Advanced Resampling Techniques |
author |
Tojeiro, Carlos A. C. [UNESP] |
author_facet |
Tojeiro, Carlos A. C. [UNESP] Lucas, Thiago J. [UNESP] Passos, Leandro A. [UNESP] Rodrigues, Douglas [UNESP] Prado, Simone G. D. [UNESP] Papa, Joao Paulo [UNESP] Da Costa, Kelton A. P. [UNESP] |
author_role |
author |
author2 |
Lucas, Thiago J. [UNESP] Passos, Leandro A. [UNESP] Rodrigues, Douglas [UNESP] Prado, Simone G. D. [UNESP] Papa, Joao Paulo [UNESP] Da Costa, Kelton A. P. [UNESP] |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Tojeiro, Carlos A. C. [UNESP] Lucas, Thiago J. [UNESP] Passos, Leandro A. [UNESP] Rodrigues, Douglas [UNESP] Prado, Simone G. D. [UNESP] Papa, Joao Paulo [UNESP] Da Costa, Kelton A. P. [UNESP] |
dc.subject.por.fl_str_mv |
Cyberattack Cybersecurity Internet of Things Intrusion Detection Resampling |
topic |
Cyberattack Cybersecurity Internet of Things Intrusion Detection Resampling |
description |
As the world increasingly relies on emerging technologies like the Internet of Things, there is a growing demand for large-scale distributed software to perform various tasks, facilitate communication, and share resources between devices. However, the implementation and configuration of such softwares can create openings for intrusion attacks through vulnerabilities and weaknesses. To address this concern, we have developed a machine-learning solution that leverages Logistic Regression and Random Forest classifiers with data balancing techniques to classify intrusion attacks accurately. Our experiments demonstrated the most effective results using the Random Forest classifier and oversampling techniques. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-01-01 2025-04-29T20:14:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IWSSIP62407.2024.10634015 International Conference on Systems, Signals, and Image Processing. 2157-8702 2157-8672 https://hdl.handle.net/11449/309231 10.1109/IWSSIP62407.2024.10634015 2-s2.0-85202834639 |
url |
http://dx.doi.org/10.1109/IWSSIP62407.2024.10634015 https://hdl.handle.net/11449/309231 |
identifier_str_mv |
International Conference on Systems, Signals, and Image Processing. 2157-8702 2157-8672 10.1109/IWSSIP62407.2024.10634015 2-s2.0-85202834639 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Conference on Systems, Signals, and Image Processing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834482582914334720 |