Physics-informed neural networks for solving elasticity problems
Main Author: | |
---|---|
Publication Date: | 2023 |
Other Authors: | , |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | https://hdl.handle.net/11449/253634 |
Summary: | The first author would like to thank São Paulo Research Foundation (FAPESP) for providing financial support under grant number 2022/16156-9. |
id |
UNSP_17f2df7c79fb469829b5ebc2c6c630e4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/253634 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Physics-informed neural networks for solving elasticity problemsSolid mechanicsPhysics-informed neural networksStress distributionData-free modelingThe first author would like to thank São Paulo Research Foundation (FAPESP) for providing financial support under grant number 2022/16156-9.Computational mechanics has seen remarkable progress in recent years due to the integration of machine learning techniques, particularly neural networks. Traditional approaches in solid mechanics, such as the finite element method (FEM), often require extensive manual labor in discretization and mesh generation, making them time-consuming and challenging for complex geometries. Moreover, these methods heavily rely on accurate and complete data, which may not always be readily available or prone to measurement errors. On the other hand, Physics-Informed Neural Networks (PINNs) are a machine learning technique that can learn from data and physics equations, allowing accurate and physically consistent predictions. Through this study, we aim to demonstrate the effectiveness of PINNs in accurately predicting the stress distribution in a triangular plate, showcasing their potential as a valuable tool in solving real-world solid mechanics problems. Combining the elasticity conservation laws and boundary conditions into the neural network architecture creates a PINN and is trained on a coarse mesh of points over the plate domain and evaluated on a fine mesh using a data-free approach, compared with the Airy analytical solution.Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM)São Paulo Research Foundation (FAPESP) Grant No 2022/16156-9Almeida, Estevão Fuzaro [UNESP]Silva, Samuel da [UNESP]Cunha Júnior, Americo2024-03-11T19:09:18Z2024-03-11T19:09:18Z2023-12-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectapplication/pdfALMEIDA, E. F.; SILVA, S.; CUNHA JR, A. Physics-informed neural networks for solving elasticity problems. In: BRAZILIAN CONGRESS OF THERMAL SCIENCES AND ENGINEERING, 27th, 2023, Florianópolis. Proceedings [...] Rio de Janeiro: ABCM, 2023. v. 1. p. 1-8.https://hdl.handle.net/11449/25363410.26678/ABCM.COBEM2023.COB2023-0310157791846593546868075538006078030000-0001-7406-86980000-0001-6430-3746enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESP2024-07-04T20:06:26Zoai:repositorio.unesp.br:11449/253634Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-07-04T20:06:26Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Physics-informed neural networks for solving elasticity problems |
title |
Physics-informed neural networks for solving elasticity problems |
spellingShingle |
Physics-informed neural networks for solving elasticity problems Almeida, Estevão Fuzaro [UNESP] Solid mechanics Physics-informed neural networks Stress distribution Data-free modeling |
title_short |
Physics-informed neural networks for solving elasticity problems |
title_full |
Physics-informed neural networks for solving elasticity problems |
title_fullStr |
Physics-informed neural networks for solving elasticity problems |
title_full_unstemmed |
Physics-informed neural networks for solving elasticity problems |
title_sort |
Physics-informed neural networks for solving elasticity problems |
author |
Almeida, Estevão Fuzaro [UNESP] |
author_facet |
Almeida, Estevão Fuzaro [UNESP] Silva, Samuel da [UNESP] Cunha Júnior, Americo |
author_role |
author |
author2 |
Silva, Samuel da [UNESP] Cunha Júnior, Americo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
São Paulo Research Foundation (FAPESP) Grant No 2022/16156-9 |
dc.contributor.author.fl_str_mv |
Almeida, Estevão Fuzaro [UNESP] Silva, Samuel da [UNESP] Cunha Júnior, Americo |
dc.subject.por.fl_str_mv |
Solid mechanics Physics-informed neural networks Stress distribution Data-free modeling |
topic |
Solid mechanics Physics-informed neural networks Stress distribution Data-free modeling |
description |
The first author would like to thank São Paulo Research Foundation (FAPESP) for providing financial support under grant number 2022/16156-9. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-08 2024-03-11T19:09:18Z 2024-03-11T19:09:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
ALMEIDA, E. F.; SILVA, S.; CUNHA JR, A. Physics-informed neural networks for solving elasticity problems. In: BRAZILIAN CONGRESS OF THERMAL SCIENCES AND ENGINEERING, 27th, 2023, Florianópolis. Proceedings [...] Rio de Janeiro: ABCM, 2023. v. 1. p. 1-8. https://hdl.handle.net/11449/253634 10.26678/ABCM.COBEM2023.COB2023-0310 1577918465935468 6807553800607803 0000-0001-7406-8698 0000-0001-6430-3746 |
identifier_str_mv |
ALMEIDA, E. F.; SILVA, S.; CUNHA JR, A. Physics-informed neural networks for solving elasticity problems. In: BRAZILIAN CONGRESS OF THERMAL SCIENCES AND ENGINEERING, 27th, 2023, Florianópolis. Proceedings [...] Rio de Janeiro: ABCM, 2023. v. 1. p. 1-8. 10.26678/ABCM.COBEM2023.COB2023-0310 1577918465935468 6807553800607803 0000-0001-7406-8698 0000-0001-6430-3746 |
url |
https://hdl.handle.net/11449/253634 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
publisher.none.fl_str_mv |
Associação Brasileira de Engenharia e Ciências Mecânicas (ABCM) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484524719800320 |