Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm

Bibliographic Details
Main Author: Lieira, Douglas Dias [UNESP]
Publication Date: 2023
Other Authors: Quessada, Matheus Sanches [UNESP], Nakamura, Luis Hideo Vasconcelos, Sampaio, Sandra, De Grande, Robson E., Meneguette, Rodolfo Ipolito
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.23919/CISTI58278.2023.10211659
https://hdl.handle.net/11449/306413
Summary: Vehicular Edge Computing (VEC) helps intelligent transportation systems deliver information and process data efficiently, at low latency. However, with the continuous exponential increases in number of interconnected intelligent vehicles, managing massive amounts of data generated in vehicular networks becomes a great challenge. This work proposes ATARY, a method for optimizing task allocation processes in VECs using the Grey Wolf optimization (GWO) algorithm. GWO has been especially adapted to model VEC task allocation as wolves' hunting behaviour. Through a number of vehicle mobility and communication simulations, we show that ATARY is more efficient than some of the most widely used state-of-the-art mechanisms in number of allocated tasks, denied/lost services and resource usage.
id UNSP_08812f7c9e2cb8df58c95c05dfb76b1f
oai_identifier_str oai:repositorio.unesp.br:11449/306413
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Optimization of the Task Allocation Process in VEC with the GWO Bioinspired AlgorithmGWOTask AllocationV2VVECVehicular Edge Computing (VEC) helps intelligent transportation systems deliver information and process data efficiently, at low latency. However, with the continuous exponential increases in number of interconnected intelligent vehicles, managing massive amounts of data generated in vehicular networks becomes a great challenge. This work proposes ATARY, a method for optimizing task allocation processes in VECs using the Grey Wolf optimization (GWO) algorithm. GWO has been especially adapted to model VEC task allocation as wolves' hunting behaviour. Through a number of vehicle mobility and communication simulations, we show that ATARY is more efficient than some of the most widely used state-of-the-art mechanisms in number of allocated tasks, denied/lost services and resource usage.Ifsp Catanduva/UNESP, SPUNESP/Brock University, SPIfsp Catanduva/USP, SPUniversity of ManchesterBrock UniversityUniversity of Sao Paulo - Usp, SPIfsp Catanduva/UNESP, SPUNESP/Brock University, SPUniversidade Estadual Paulista (UNESP)Universidade de São Paulo (USP)University of ManchesterBrock UniversityLieira, Douglas Dias [UNESP]Quessada, Matheus Sanches [UNESP]Nakamura, Luis Hideo VasconcelosSampaio, SandraDe Grande, Robson E.Meneguette, Rodolfo Ipolito2025-04-29T20:06:08Z2023-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.23919/CISTI58278.2023.10211659Iberian Conference on Information Systems and Technologies, CISTI, v. 2023-June.2166-07352166-0727https://hdl.handle.net/11449/30641310.23919/CISTI58278.2023.102116592-s2.0-85169829761Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIberian Conference on Information Systems and Technologies, CISTIinfo:eu-repo/semantics/openAccess2025-04-30T14:00:04Zoai:repositorio.unesp.br:11449/306413Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462025-04-30T14:00:04Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
title Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
spellingShingle Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
Lieira, Douglas Dias [UNESP]
GWO
Task Allocation
V2V
VEC
title_short Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
title_full Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
title_fullStr Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
title_full_unstemmed Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
title_sort Optimization of the Task Allocation Process in VEC with the GWO Bioinspired Algorithm
author Lieira, Douglas Dias [UNESP]
author_facet Lieira, Douglas Dias [UNESP]
Quessada, Matheus Sanches [UNESP]
Nakamura, Luis Hideo Vasconcelos
Sampaio, Sandra
De Grande, Robson E.
Meneguette, Rodolfo Ipolito
author_role author
author2 Quessada, Matheus Sanches [UNESP]
Nakamura, Luis Hideo Vasconcelos
Sampaio, Sandra
De Grande, Robson E.
Meneguette, Rodolfo Ipolito
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade de São Paulo (USP)
University of Manchester
Brock University
dc.contributor.author.fl_str_mv Lieira, Douglas Dias [UNESP]
Quessada, Matheus Sanches [UNESP]
Nakamura, Luis Hideo Vasconcelos
Sampaio, Sandra
De Grande, Robson E.
Meneguette, Rodolfo Ipolito
dc.subject.por.fl_str_mv GWO
Task Allocation
V2V
VEC
topic GWO
Task Allocation
V2V
VEC
description Vehicular Edge Computing (VEC) helps intelligent transportation systems deliver information and process data efficiently, at low latency. However, with the continuous exponential increases in number of interconnected intelligent vehicles, managing massive amounts of data generated in vehicular networks becomes a great challenge. This work proposes ATARY, a method for optimizing task allocation processes in VECs using the Grey Wolf optimization (GWO) algorithm. GWO has been especially adapted to model VEC task allocation as wolves' hunting behaviour. Through a number of vehicle mobility and communication simulations, we show that ATARY is more efficient than some of the most widely used state-of-the-art mechanisms in number of allocated tasks, denied/lost services and resource usage.
publishDate 2023
dc.date.none.fl_str_mv 2023-01-01
2025-04-29T20:06:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.23919/CISTI58278.2023.10211659
Iberian Conference on Information Systems and Technologies, CISTI, v. 2023-June.
2166-0735
2166-0727
https://hdl.handle.net/11449/306413
10.23919/CISTI58278.2023.10211659
2-s2.0-85169829761
url http://dx.doi.org/10.23919/CISTI58278.2023.10211659
https://hdl.handle.net/11449/306413
identifier_str_mv Iberian Conference on Information Systems and Technologies, CISTI, v. 2023-June.
2166-0735
2166-0727
10.23919/CISTI58278.2023.10211659
2-s2.0-85169829761
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Iberian Conference on Information Systems and Technologies, CISTI
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834482368512000000