Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones
Main Author: | |
---|---|
Publication Date: | 2022 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1142/S0218127422501140 http://hdl.handle.net/11449/241272 |
Summary: | In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in a discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. We prove that if the central subsystem, i.e. the system defined between the two parallel lines, has a real center and the other subsystems have centers or saddles, then we have at least three limit cycles that appear after perturbations of the periodic annulus. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system and present a normal form for this system in order to simplify the computations. |
id |
UNSP_07fee34c1f6c2cc0db3ada90b7524ce5 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/241272 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three ZonesLimit cyclesMelnikov functionPeriodic annulusPiecewise Hamiltonian differential systemIn this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in a discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. We prove that if the central subsystem, i.e. the system defined between the two parallel lines, has a real center and the other subsystems have centers or saddles, then we have at least three limit cycles that appear after perturbations of the periodic annulus. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system and present a normal form for this system in order to simplify the computations.Departamento de Matemática IBILCE-UNESP, R. Cristovão Colombo 2265, S. J. Rio Preto, SPDepartamento de Matemática IBILCE-UNESP, R. Cristovão Colombo 2265, S. J. Rio Preto, SPUniversidade Estadual Paulista (UNESP)Pessoa, Claudio [UNESP]Ribeiro, Ronisio [UNESP]2023-03-01T20:54:33Z2023-03-01T20:54:33Z2022-06-30info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1142/S0218127422501140International Journal of Bifurcation and Chaos, v. 32, n. 8, 2022.0218-1274http://hdl.handle.net/11449/24127210.1142/S02181274225011402-s2.0-85133418641Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInternational Journal of Bifurcation and Chaosinfo:eu-repo/semantics/openAccess2024-11-01T14:27:30Zoai:repositorio.unesp.br:11449/241272Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-11-01T14:27:30Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
title |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
spellingShingle |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones Pessoa, Claudio [UNESP] Limit cycles Melnikov function Periodic annulus Piecewise Hamiltonian differential system |
title_short |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
title_full |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
title_fullStr |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
title_full_unstemmed |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
title_sort |
Limit Cycles Bifurcating from a Periodic Annulus in Discontinuous Planar Piecewise Linear Hamiltonian Differential System with Three Zones |
author |
Pessoa, Claudio [UNESP] |
author_facet |
Pessoa, Claudio [UNESP] Ribeiro, Ronisio [UNESP] |
author_role |
author |
author2 |
Ribeiro, Ronisio [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Pessoa, Claudio [UNESP] Ribeiro, Ronisio [UNESP] |
dc.subject.por.fl_str_mv |
Limit cycles Melnikov function Periodic annulus Piecewise Hamiltonian differential system |
topic |
Limit cycles Melnikov function Periodic annulus Piecewise Hamiltonian differential system |
description |
In this paper, we study the number of limit cycles that can bifurcate from a periodic annulus in a discontinuous planar piecewise linear Hamiltonian differential system with three zones separated by two parallel straight lines. We prove that if the central subsystem, i.e. the system defined between the two parallel lines, has a real center and the other subsystems have centers or saddles, then we have at least three limit cycles that appear after perturbations of the periodic annulus. For this, we study the number of zeros of a Melnikov function for piecewise Hamiltonian system and present a normal form for this system in order to simplify the computations. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-30 2023-03-01T20:54:33Z 2023-03-01T20:54:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1142/S0218127422501140 International Journal of Bifurcation and Chaos, v. 32, n. 8, 2022. 0218-1274 http://hdl.handle.net/11449/241272 10.1142/S0218127422501140 2-s2.0-85133418641 |
url |
http://dx.doi.org/10.1142/S0218127422501140 http://hdl.handle.net/11449/241272 |
identifier_str_mv |
International Journal of Bifurcation and Chaos, v. 32, n. 8, 2022. 0218-1274 10.1142/S0218127422501140 2-s2.0-85133418641 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Bifurcation and Chaos |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483839483772928 |