An unsupervised distance learning framework for multimedia retrieval

Bibliographic Details
Main Author: Valem, Lucas Pascotti [UNESP]
Publication Date: 2017
Other Authors: Pedronette, Daniel Carlos Guimarães [UNESP]
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1145/3078971.3079017
http://hdl.handle.net/11449/169887
Summary: Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.
id UNSP_02b860accff182958934b4e869e8a3dd
oai_identifier_str oai:repositorio.unesp.br:11449/169887
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling An unsupervised distance learning framework for multimedia retrievalContent-based image retrievalRank-aggregationRerankingUnsupervised learningDue to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.Department of Statistics Applied Math. and Computing São Paulo State University (UNESP)Department of Statistics Applied Math. and Computing São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Valem, Lucas Pascotti [UNESP]Pedronette, Daniel Carlos Guimarães [UNESP]2018-12-11T16:48:02Z2018-12-11T16:48:02Z2017-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject107-111http://dx.doi.org/10.1145/3078971.3079017ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval, p. 107-111.http://hdl.handle.net/11449/16988710.1145/3078971.30790172-s2.0-85021786846Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrievalinfo:eu-repo/semantics/openAccess2021-10-23T21:46:59Zoai:repositorio.unesp.br:11449/169887Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462021-10-23T21:46:59Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv An unsupervised distance learning framework for multimedia retrieval
title An unsupervised distance learning framework for multimedia retrieval
spellingShingle An unsupervised distance learning framework for multimedia retrieval
Valem, Lucas Pascotti [UNESP]
Content-based image retrieval
Rank-aggregation
Reranking
Unsupervised learning
title_short An unsupervised distance learning framework for multimedia retrieval
title_full An unsupervised distance learning framework for multimedia retrieval
title_fullStr An unsupervised distance learning framework for multimedia retrieval
title_full_unstemmed An unsupervised distance learning framework for multimedia retrieval
title_sort An unsupervised distance learning framework for multimedia retrieval
author Valem, Lucas Pascotti [UNESP]
author_facet Valem, Lucas Pascotti [UNESP]
Pedronette, Daniel Carlos Guimarães [UNESP]
author_role author
author2 Pedronette, Daniel Carlos Guimarães [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Valem, Lucas Pascotti [UNESP]
Pedronette, Daniel Carlos Guimarães [UNESP]
dc.subject.por.fl_str_mv Content-based image retrieval
Rank-aggregation
Reranking
Unsupervised learning
topic Content-based image retrieval
Rank-aggregation
Reranking
Unsupervised learning
description Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-06
2018-12-11T16:48:02Z
2018-12-11T16:48:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1145/3078971.3079017
ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval, p. 107-111.
http://hdl.handle.net/11449/169887
10.1145/3078971.3079017
2-s2.0-85021786846
url http://dx.doi.org/10.1145/3078971.3079017
http://hdl.handle.net/11449/169887
identifier_str_mv ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval, p. 107-111.
10.1145/3078971.3079017
2-s2.0-85021786846
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 107-111
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834484728212750336