An unsupervised distance learning framework for multimedia retrieval
Main Author: | |
---|---|
Publication Date: | 2017 |
Other Authors: | |
Format: | Conference object |
Language: | eng |
Source: | Repositório Institucional da UNESP |
Download full: | http://dx.doi.org/10.1145/3078971.3079017 http://hdl.handle.net/11449/169887 |
Summary: | Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license. |
id |
UNSP_02b860accff182958934b4e869e8a3dd |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/169887 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An unsupervised distance learning framework for multimedia retrievalContent-based image retrievalRank-aggregationRerankingUnsupervised learningDue to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license.Department of Statistics Applied Math. and Computing São Paulo State University (UNESP)Department of Statistics Applied Math. and Computing São Paulo State University (UNESP)Universidade Estadual Paulista (Unesp)Valem, Lucas Pascotti [UNESP]Pedronette, Daniel Carlos Guimarães [UNESP]2018-12-11T16:48:02Z2018-12-11T16:48:02Z2017-06-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject107-111http://dx.doi.org/10.1145/3078971.3079017ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval, p. 107-111.http://hdl.handle.net/11449/16988710.1145/3078971.30790172-s2.0-85021786846Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrievalinfo:eu-repo/semantics/openAccess2021-10-23T21:46:59Zoai:repositorio.unesp.br:11449/169887Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462021-10-23T21:46:59Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An unsupervised distance learning framework for multimedia retrieval |
title |
An unsupervised distance learning framework for multimedia retrieval |
spellingShingle |
An unsupervised distance learning framework for multimedia retrieval Valem, Lucas Pascotti [UNESP] Content-based image retrieval Rank-aggregation Reranking Unsupervised learning |
title_short |
An unsupervised distance learning framework for multimedia retrieval |
title_full |
An unsupervised distance learning framework for multimedia retrieval |
title_fullStr |
An unsupervised distance learning framework for multimedia retrieval |
title_full_unstemmed |
An unsupervised distance learning framework for multimedia retrieval |
title_sort |
An unsupervised distance learning framework for multimedia retrieval |
author |
Valem, Lucas Pascotti [UNESP] |
author_facet |
Valem, Lucas Pascotti [UNESP] Pedronette, Daniel Carlos Guimarães [UNESP] |
author_role |
author |
author2 |
Pedronette, Daniel Carlos Guimarães [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Valem, Lucas Pascotti [UNESP] Pedronette, Daniel Carlos Guimarães [UNESP] |
dc.subject.por.fl_str_mv |
Content-based image retrieval Rank-aggregation Reranking Unsupervised learning |
topic |
Content-based image retrieval Rank-aggregation Reranking Unsupervised learning |
description |
Due to the increasing availability of image and multimedia collections, unsupervised post-processing methods, which are capable of improving the effectiveness of retrieval results without the need of user intervention, have become indispensable. This paper presents the Unsupervised Distance Learning Framework (UDLF), a software which enables an easy use and evaluation of unsupervised learning methods. The framework defines a broad model, allowing the implementation of different unsupervised methods and supporting diverse file formats for input and output. Seven different unsupervised methods are initially available in the framework. Executions and experiments can be easily defined by setting a configuration file. The framework also includes the evaluation of the retrieval results exporting visual output results, computing effectiveness and efficiency measures. The source-code is public available, such that anyone can freely access, use, change, and share the software under the terms of the GPLv2 license. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-06 2018-12-11T16:48:02Z 2018-12-11T16:48:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1145/3078971.3079017 ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval, p. 107-111. http://hdl.handle.net/11449/169887 10.1145/3078971.3079017 2-s2.0-85021786846 |
url |
http://dx.doi.org/10.1145/3078971.3079017 http://hdl.handle.net/11449/169887 |
identifier_str_mv |
ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval, p. 107-111. 10.1145/3078971.3079017 2-s2.0-85021786846 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
ICMR 2017 - Proceedings of the 2017 ACM International Conference on Multimedia Retrieval |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
107-111 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834484728212750336 |