Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte

Bibliographic Details
Main Author: Santos, Carlos Alexandre Silva dos
Publication Date: 2017
Format: Master thesis
Language: por
Source: Repositório Institucional da UNIPAMPA
Download full: http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
Summary: The automatic recognition of cattle branding is a necessity for government agencies responsible for this activity. In order to improve this process, this work proposes an architecture which is able of performing the automatic recognition of these brandings. The proposed software implements two methods, namely: Bag-of-Features and CNN. For the Bag-of-Features method, the SURF algorithm was used in order to extract points of interest from the images. We also used K-means clustering to create the visual word cluster. The Bag-of-Features method presented a overall accuracy of 86.02% and a processing time of 56.705 seconds in a set containing 12 brandings and 540 images. For the CNN method, we created a complete network with five convolutional layers, and three layers fully connected. For the 1st convolutional layer we converted the input images into the RGB color for mat. In order to activate the CNN, we performed an application of the ReLU, and used the maxpooling technique for the reduction. The CNN method presented 93.28% of overall accuracy and a processing time of 12.716 seconds for a set containing 12 brandings and 540 images. The CNN method includes six steps: a) selecting the image database; b) selecting the pre-trained CNN model; c) pre-processing the images and applying the CNN; d) extracting the features from the images; e) training and classifying the images using SVM; f) assessing the classification results. The experiments were performed using the cattle branding image set of a City Hall. Metrics of overall accuracy, recall, precision, Kappa coefficient, and processing time were used in order to assess the performance of the proposed architecture. Results were satisfactory. The CNN method showed the best results when compared to Bag-of-Features method, considering that it was 7.26% more accurate and 43.989 seconds faster. Also, some experiments were conducted with the CNN method for sets of brandings with a greater number of samples. These larger sets presented a overall accuracy rate of 94.90% for 12 brandings and 840 images, and 80.57% for 500 brandings and 22,500 images, respectively.
id UNIP_5bac9b0817f27e4b8e563ab6029f9e9d
oai_identifier_str oai:repositorio.unipampa.edu.br:riu/2028
network_acronym_str UNIP
network_name_str Repositório Institucional da UNIPAMPA
repository_id_str
spelling Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporteAprendizagem profundaRedes neurais convolucionaisMáquinas de vetores de suporteReconhecimento de imagensMarcas de gadoEngenharia elétricaDeep learningConvolutional neural networksSupport vector machinesImage recognitionCattle brandingCNPQ::ENGENHARIASThe automatic recognition of cattle branding is a necessity for government agencies responsible for this activity. In order to improve this process, this work proposes an architecture which is able of performing the automatic recognition of these brandings. The proposed software implements two methods, namely: Bag-of-Features and CNN. For the Bag-of-Features method, the SURF algorithm was used in order to extract points of interest from the images. We also used K-means clustering to create the visual word cluster. The Bag-of-Features method presented a overall accuracy of 86.02% and a processing time of 56.705 seconds in a set containing 12 brandings and 540 images. For the CNN method, we created a complete network with five convolutional layers, and three layers fully connected. For the 1st convolutional layer we converted the input images into the RGB color for mat. In order to activate the CNN, we performed an application of the ReLU, and used the maxpooling technique for the reduction. The CNN method presented 93.28% of overall accuracy and a processing time of 12.716 seconds for a set containing 12 brandings and 540 images. The CNN method includes six steps: a) selecting the image database; b) selecting the pre-trained CNN model; c) pre-processing the images and applying the CNN; d) extracting the features from the images; e) training and classifying the images using SVM; f) assessing the classification results. The experiments were performed using the cattle branding image set of a City Hall. Metrics of overall accuracy, recall, precision, Kappa coefficient, and processing time were used in order to assess the performance of the proposed architecture. Results were satisfactory. The CNN method showed the best results when compared to Bag-of-Features method, considering that it was 7.26% more accurate and 43.989 seconds faster. Also, some experiments were conducted with the CNN method for sets of brandings with a greater number of samples. These larger sets presented a overall accuracy rate of 94.90% for 12 brandings and 840 images, and 80.57% for 500 brandings and 22,500 images, respectively.O reconhecimento automático de imagens de marca de gado é uma necessidade para os órgãos governamentais responsáveis por esta atividade. Para auxiliar neste processo, este trabalho propõe uma arquitetura que seja capaz de realizar o reconhecimento automático dessas marcas. Nesse sentido, uma arquitetura foi implementada e experimentos foram realizados com dois métodos: Bag-of-Features e Redes Neurais Convolucionais (CNN). No método Bag-of-Features foi utilizado o algoritmo SURF para extração de pontos de interesse das imagens e para criação do agrupa mento de palavras visuais foi utilizado o clustering K-means. O método Bag-of-Features apresentou acurácia geral de 86,02% e tempo de processamento de 56,705 segundos para um conjunto de 12 marcas e 540 imagens. No método CNN foi criada uma rede completa com 5 camadas convolucionais e 3 camadas totalmente conectadas. A 1 ª camada convolucional teve como entrada imagens transformadas para o formato de cores RGB. Para ativação da CNN foi utilizada a função ReLU, e a técnica de maxpooling para redução. O método CNN apresentou acurácia geral de 93,28% e tempo de processamento de 12,716 segundos para um conjunto de 12 marcas e 540 imagens. O método CNN consiste de seis etapas: a) selecionar o banco de imagens; b) selecionar o modelo de CNN pré-treinado; c) pré-processar as imagens e aplicar a CNN; d) extrair as características das imagens; e) treinar e classificar as imagens utilizando SVM; f) avaliar os resultados da classificação. Os experimentos foram realizados utilizando o conjunto de imagens de marcas de gado de uma prefeitura municipal. Para avaliação do desempenho da arquitetura proposta foram utilizadas as métricas de acurácia geral, recall, precisão, coeficiente Kappa e tempo de processamento. Os resultados obtidos foram satisfatórios, nos quais o método CNN apresentou os melhores resultados em comparação ao método Bag-of-Features, sendo 7,26% mais preciso e 43,989 segundos mais rápido. Também foram realizados experimentos com o método CNN em conjuntos de marcas com número maior de amostras, o qual obteve taxas de acurácia geral de 94,90% para 12 marcas e 840 imagens, e 80,57% para 500 marcas e 22.500 imagens, respectivamente.Universidade Federal do PampaUNIPAMPAMestrado Acadêmico em Engenharia ElétricaBrasilCampus AlegreteWelfer, DanielSantos, Carlos Alexandre Silva dos2017-10-31T18:24:21Z2017-10-31T18:24:21Z2017-09-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSANTOS, Carlos Alexandre Silva dos. Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte. 135 p. 2017. Dissertação (Mestrado em Engenharia em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIPAMPAinstname:Universidade Federal do Pampa (UNIPAMPA)instacron:UNIPAMPA2018-06-21T17:01:56Zoai:repositorio.unipampa.edu.br:riu/2028Repositório InstitucionalPUBhttp://dspace.unipampa.edu.br:8080/oai/requestsisbi@unipampa.edu.bropendoar:2018-06-21T17:01:56Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)false
dc.title.none.fl_str_mv Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
spellingShingle Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
Santos, Carlos Alexandre Silva dos
Aprendizagem profunda
Redes neurais convolucionais
Máquinas de vetores de suporte
Reconhecimento de imagens
Marcas de gado
Engenharia elétrica
Deep learning
Convolutional neural networks
Support vector machines
Image recognition
Cattle branding
CNPQ::ENGENHARIAS
title_short Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_full Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_fullStr Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_full_unstemmed Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
title_sort Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte
author Santos, Carlos Alexandre Silva dos
author_facet Santos, Carlos Alexandre Silva dos
author_role author
dc.contributor.none.fl_str_mv Welfer, Daniel
dc.contributor.author.fl_str_mv Santos, Carlos Alexandre Silva dos
dc.subject.por.fl_str_mv Aprendizagem profunda
Redes neurais convolucionais
Máquinas de vetores de suporte
Reconhecimento de imagens
Marcas de gado
Engenharia elétrica
Deep learning
Convolutional neural networks
Support vector machines
Image recognition
Cattle branding
CNPQ::ENGENHARIAS
topic Aprendizagem profunda
Redes neurais convolucionais
Máquinas de vetores de suporte
Reconhecimento de imagens
Marcas de gado
Engenharia elétrica
Deep learning
Convolutional neural networks
Support vector machines
Image recognition
Cattle branding
CNPQ::ENGENHARIAS
description The automatic recognition of cattle branding is a necessity for government agencies responsible for this activity. In order to improve this process, this work proposes an architecture which is able of performing the automatic recognition of these brandings. The proposed software implements two methods, namely: Bag-of-Features and CNN. For the Bag-of-Features method, the SURF algorithm was used in order to extract points of interest from the images. We also used K-means clustering to create the visual word cluster. The Bag-of-Features method presented a overall accuracy of 86.02% and a processing time of 56.705 seconds in a set containing 12 brandings and 540 images. For the CNN method, we created a complete network with five convolutional layers, and three layers fully connected. For the 1st convolutional layer we converted the input images into the RGB color for mat. In order to activate the CNN, we performed an application of the ReLU, and used the maxpooling technique for the reduction. The CNN method presented 93.28% of overall accuracy and a processing time of 12.716 seconds for a set containing 12 brandings and 540 images. The CNN method includes six steps: a) selecting the image database; b) selecting the pre-trained CNN model; c) pre-processing the images and applying the CNN; d) extracting the features from the images; e) training and classifying the images using SVM; f) assessing the classification results. The experiments were performed using the cattle branding image set of a City Hall. Metrics of overall accuracy, recall, precision, Kappa coefficient, and processing time were used in order to assess the performance of the proposed architecture. Results were satisfactory. The CNN method showed the best results when compared to Bag-of-Features method, considering that it was 7.26% more accurate and 43.989 seconds faster. Also, some experiments were conducted with the CNN method for sets of brandings with a greater number of samples. These larger sets presented a overall accuracy rate of 94.90% for 12 brandings and 840 images, and 80.57% for 500 brandings and 22,500 images, respectively.
publishDate 2017
dc.date.none.fl_str_mv 2017-10-31T18:24:21Z
2017-10-31T18:24:21Z
2017-09-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Carlos Alexandre Silva dos. Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte. 135 p. 2017. Dissertação (Mestrado em Engenharia em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.
http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
identifier_str_mv SANTOS, Carlos Alexandre Silva dos. Reconhecimento de imagens de marcas de gado utilizando redes neurais convolucionais e máquinas de vetores de suporte. 135 p. 2017. Dissertação (Mestrado em Engenharia em Engenharia Elétrica) – Universidade Federal do Pampa, Campus Alegrete, Alegrete, 2017.
url http://dspace.unipampa.edu.br:8080/jspui/handle/riu/2028
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Pampa
UNIPAMPA
Mestrado Acadêmico em Engenharia Elétrica
Brasil
Campus Alegrete
publisher.none.fl_str_mv Universidade Federal do Pampa
UNIPAMPA
Mestrado Acadêmico em Engenharia Elétrica
Brasil
Campus Alegrete
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIPAMPA
instname:Universidade Federal do Pampa (UNIPAMPA)
instacron:UNIPAMPA
instname_str Universidade Federal do Pampa (UNIPAMPA)
instacron_str UNIPAMPA
institution UNIPAMPA
reponame_str Repositório Institucional da UNIPAMPA
collection Repositório Institucional da UNIPAMPA
repository.name.fl_str_mv Repositório Institucional da UNIPAMPA - Universidade Federal do Pampa (UNIPAMPA)
repository.mail.fl_str_mv sisbi@unipampa.edu.br
_version_ 1842255666521047040