Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine

Bibliographic Details
Main Author: Kuhl, Samuel
Publication Date: 2024
Format: Master thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Download full: https://tede.unioeste.br/handle/tede/7316
Summary: The irregular deforestation and suppression of native biomes for the sake of development can have consequences in various areas of the environment, such as the climate. Remote sensing combined with image classification is an important tool for monitoring the environment, but the input information must be curated in order to reduce computational effort and obtain the greatest possible precision and accuracy. This work aimed to verify the cost-effectiveness of different sets of optical and radar images in the classification, using the Random Forest algorithm, of areas of deforestation in the Brazilian Amazon. The study area is located in the municipality of Portel, in the state of Pará, Brazil. The image sets were derived from the Sentinel 1 (SAR) and Sentinel 2 (MSI) constellations for the year 2023. The classifications using all the images per set differed visually and, in their accuracies, with the set composed only of SAR polarizations having an overall accuracy (EG) of around 92%, the set of MSI bands having an average EG of 94%, the set of indices having an EG of around 94.5% and the Complete set having an EG of 95%. The computational resources used on the GEE platform differed due to the use of SAR images or not, with the sets containing SAR images using a greater processing load due to the filters needed to reduce speckle noise (Frost and Quegan&Yu filters). The number of images influenced the amount of memory used for processing, with the classifier using around 8 times more memory when comparing the set with the fewest bands (Sentinel 1 - 4 images) with the set with the most images (Complete - 234 images). The most cost-effective set was the Complete 25% set (58 images), using bands and indices derived from both sensors, with high accuracy and average processing consumption compared to the others. A classification was carried out with this set for the year 2022, which was subtracted from the 2023 classification, generating a layer of deforestation alerts for the year 2023, which when visually compared with the official data released by PRODES 2023, there was agreement in the location and shape of the alerts, performing the classification function well with optimized use of processing.
id UNIOESTE-1_416f6f7f0612e0b36b3dd6b42b69a9d7
oai_identifier_str oai:tede.unioeste.br:tede/7316
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Mercante, EriveltoRohden, Victor HugoMaggi, Marcio Furlanhttp://lattes.cnpq.br/0712780818548571Kuhl, Samuel2024-07-26T12:33:03Z2024-02-20Kuhl, Samuel. Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine. 2024. 68 f. Dissertação( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.https://tede.unioeste.br/handle/tede/7316The irregular deforestation and suppression of native biomes for the sake of development can have consequences in various areas of the environment, such as the climate. Remote sensing combined with image classification is an important tool for monitoring the environment, but the input information must be curated in order to reduce computational effort and obtain the greatest possible precision and accuracy. This work aimed to verify the cost-effectiveness of different sets of optical and radar images in the classification, using the Random Forest algorithm, of areas of deforestation in the Brazilian Amazon. The study area is located in the municipality of Portel, in the state of Pará, Brazil. The image sets were derived from the Sentinel 1 (SAR) and Sentinel 2 (MSI) constellations for the year 2023. The classifications using all the images per set differed visually and, in their accuracies, with the set composed only of SAR polarizations having an overall accuracy (EG) of around 92%, the set of MSI bands having an average EG of 94%, the set of indices having an EG of around 94.5% and the Complete set having an EG of 95%. The computational resources used on the GEE platform differed due to the use of SAR images or not, with the sets containing SAR images using a greater processing load due to the filters needed to reduce speckle noise (Frost and Quegan&Yu filters). The number of images influenced the amount of memory used for processing, with the classifier using around 8 times more memory when comparing the set with the fewest bands (Sentinel 1 - 4 images) with the set with the most images (Complete - 234 images). The most cost-effective set was the Complete 25% set (58 images), using bands and indices derived from both sensors, with high accuracy and average processing consumption compared to the others. A classification was carried out with this set for the year 2022, which was subtracted from the 2023 classification, generating a layer of deforestation alerts for the year 2023, which when visually compared with the official data released by PRODES 2023, there was agreement in the location and shape of the alerts, performing the classification function well with optimized use of processing.O desmatamento e supressão de biomas nativos, de forma irregular, em prol do desenvolvimento pode trazer consequências em diversas áreas do meio ambiente como, por exemplo, o clima. O sensoriamento remoto aliado à classificação de imagens é uma ferramenta importante para o monitoramento do meio ambiente, porém as informações de entrada no processo devem passar por uma curadoria para reduzir o esforço computacional e obter a maior precisão e acuraria possível. Este trabalho objetivou verificar o custo-benefício de diferentes conjuntos de imagens ópticas e de radar na classificação, por meio do algoritmo Random Forest, de áreas de desmatamento na Amazônia brasileira. A área de estudo localiza-se no município de Portel, no estado do Pará, Brasil. Os conjuntos de imagens derivam das constelações Sentinel 1 (SAR) e Sentinel 2 (MSI), para o ano de 2023. As classificações utilizando todas as imagens por conjunto diferiram visualmente e em suas precisões, o conjunto composto apenas por polarizações SAR obteve exatidão global (EG) de cerca de 92%, conjunto de bandas MSI com EG média de 94%, conjunto de índices com EG de cerca de 94,5% e conjunto Completo obteve EG de 95%. Os recursos computacionais utilizados na plataforma GEE diferiram devido ao uso de imagens SAR ou não, com os conjuntos que continham imagens SAR utilizando maior carga de processamento devido filtros necessários a redução do ruído speckle (Filtro de Frost e Quegan&Yu). O número de imagens influenciou na quantidade de memória utilizada pelo processamento, com o classificador utilizando cerca de 8 vezes mais memória quando se compara o conjunto com menos bandas (Sentinel 1 – 4 imagens) com o conjunto com mais imagens (Completo – 234 imagens). O conjunto que obteve o melhor custo-benefício foi o conjunto Completo 25% (58 imagens), utilizando bandas e índices derivados de ambos os sensores, sua precisão foi elevada e consumo de processamento mediano quando comparado aos demais. Realizou-se uma classificação com esse conjunto para o ano de 2022, ela foi subtraída da classificação de 2023, gerando uma camada de alertas de desmatamento para o ano de 2023, o qual ao se comparar visualmente com os dados oficiais, divulgados pelo PRODES 2023, observou-se concordância de local e forma dos alertas, desempenhando bem a função de classificação com uso otimizado de processamento.Submitted by Edineia Teixeira (edineia.teixeira@unioeste.br) on 2024-07-26T12:33:03Z No. of bitstreams: 1 Samuel Kuhl.pdf: 3507777 bytes, checksum: ba01af0b7a7f52b18edd568067c4cc15 (MD5)Made available in DSpace on 2024-07-26T12:33:03Z (GMT). No. of bitstreams: 1 Samuel Kuhl.pdf: 3507777 bytes, checksum: ba01af0b7a7f52b18edd568067c4cc15 (MD5) Previous issue date: 2024-02-20application/pdfpor6588633818200016417500Universidade Estadual do Oeste do ParanáCascavelPrograma de Pós-Graduação em Engenharia AgrícolaUNIOESTEBrasilCentro de Ciências Exatas e Tecnológicashttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAmazoniaSensoriamento ópticoSensoriamento SARRandom ForestAmazonOptical sensingSAR sensingRandom ForestSISTEMAS BIOLÓGICOS E AGROINDUSTRIAISSeleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth EngineVariable selection for optimization of deforestation classification on the Google Earth Engine platforminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-53476924504160521296006002214374442868382015reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALSamuel Kuhl.pdfSamuel Kuhl.pdfapplication/pdf3507777http://tede.unioeste.br:8080/tede/bitstream/tede/7316/2/Samuel+Kuhl.pdfba01af0b7a7f52b18edd568067c4cc15MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://tede.unioeste.br:8080/tede/bitstream/tede/7316/1/license.txtbd3efa91386c1718a7f26a329fdcb468MD51tede/73162024-07-26 09:33:03.38oai:tede.unioeste.br:tede/7316Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2024-07-26T12:33:03Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
dc.title.alternative.eng.fl_str_mv Variable selection for optimization of deforestation classification on the Google Earth Engine platform
title Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
spellingShingle Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
Kuhl, Samuel
Amazonia
Sensoriamento óptico
Sensoriamento SAR
Random Forest
Amazon
Optical sensing
SAR sensing
Random Forest
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
title_short Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
title_full Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
title_fullStr Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
title_full_unstemmed Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
title_sort Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine
author Kuhl, Samuel
author_facet Kuhl, Samuel
author_role author
dc.contributor.advisor1.fl_str_mv Mercante, Erivelto
dc.contributor.referee1.fl_str_mv Rohden, Victor Hugo
dc.contributor.referee2.fl_str_mv Maggi, Marcio Furlan
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0712780818548571
dc.contributor.author.fl_str_mv Kuhl, Samuel
contributor_str_mv Mercante, Erivelto
Rohden, Victor Hugo
Maggi, Marcio Furlan
dc.subject.por.fl_str_mv Amazonia
Sensoriamento óptico
Sensoriamento SAR
Random Forest
topic Amazonia
Sensoriamento óptico
Sensoriamento SAR
Random Forest
Amazon
Optical sensing
SAR sensing
Random Forest
SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
dc.subject.eng.fl_str_mv Amazon
Optical sensing
SAR sensing
Random Forest
dc.subject.cnpq.fl_str_mv SISTEMAS BIOLÓGICOS E AGROINDUSTRIAIS
description The irregular deforestation and suppression of native biomes for the sake of development can have consequences in various areas of the environment, such as the climate. Remote sensing combined with image classification is an important tool for monitoring the environment, but the input information must be curated in order to reduce computational effort and obtain the greatest possible precision and accuracy. This work aimed to verify the cost-effectiveness of different sets of optical and radar images in the classification, using the Random Forest algorithm, of areas of deforestation in the Brazilian Amazon. The study area is located in the municipality of Portel, in the state of Pará, Brazil. The image sets were derived from the Sentinel 1 (SAR) and Sentinel 2 (MSI) constellations for the year 2023. The classifications using all the images per set differed visually and, in their accuracies, with the set composed only of SAR polarizations having an overall accuracy (EG) of around 92%, the set of MSI bands having an average EG of 94%, the set of indices having an EG of around 94.5% and the Complete set having an EG of 95%. The computational resources used on the GEE platform differed due to the use of SAR images or not, with the sets containing SAR images using a greater processing load due to the filters needed to reduce speckle noise (Frost and Quegan&Yu filters). The number of images influenced the amount of memory used for processing, with the classifier using around 8 times more memory when comparing the set with the fewest bands (Sentinel 1 - 4 images) with the set with the most images (Complete - 234 images). The most cost-effective set was the Complete 25% set (58 images), using bands and indices derived from both sensors, with high accuracy and average processing consumption compared to the others. A classification was carried out with this set for the year 2022, which was subtracted from the 2023 classification, generating a layer of deforestation alerts for the year 2023, which when visually compared with the official data released by PRODES 2023, there was agreement in the location and shape of the alerts, performing the classification function well with optimized use of processing.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-07-26T12:33:03Z
dc.date.issued.fl_str_mv 2024-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Kuhl, Samuel. Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine. 2024. 68 f. Dissertação( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
dc.identifier.uri.fl_str_mv https://tede.unioeste.br/handle/tede/7316
identifier_str_mv Kuhl, Samuel. Seleção de variáveis para otimização de classificação de desmatamento na plataforma Google Earth Engine. 2024. 68 f. Dissertação( Mestrado em Engenharia Agrícola) - Universidade Estadual do Oeste do Paraná, Cascavel.
url https://tede.unioeste.br/handle/tede/7316
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -5347692450416052129
dc.relation.confidence.fl_str_mv 600
600
dc.relation.department.fl_str_mv 2214374442868382015
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Ciências Exatas e Tecnológicas
publisher.none.fl_str_mv Universidade Estadual do Oeste do Paraná
Cascavel
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/7316/2/Samuel+Kuhl.pdf
http://tede.unioeste.br:8080/tede/bitstream/tede/7316/1/license.txt
bitstream.checksum.fl_str_mv ba01af0b7a7f52b18edd568067c4cc15
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1822606110775836672