Forecast management of the refractory campaign duration in a steel industry

Bibliographic Details
Main Author: Baesso, Dalila Rodrigues
Publication Date: 2020
Other Authors: Bonelli Junior, Marco Antonio, Alvarenga, Júlio César
Format: Article
Language: eng
Source: Revista Exacta (Online)
Download full: https://periodicos.uninove.br/exacta/article/view/14537
Summary: When it comes to steel processes, it is known that refractory materials are responsible for a significant portion of the steel production costs. For this reason, this work aimed to understand the high variability and the low durability of the refractory campaign that compose a process of continuous casting in a large LD mill in the state of Minas Gerais, identifying the relationship between the process variables so it was possible to make estimates about the duration of its refractory campaign. For the selection of the explanatory factors, a variation of the method Stepwise was used. In each step of the algorithm, a model based on linear programming was responsible for the calculations of the linear regression coefficients. In the end, a prediction model was obtained for the duration of the campaign containing 12 explanatory factors and 97.66% of statistical significance.
id UNINOVE-5_0bc01c8ae53f800d23191ab57f6f6ac5
oai_identifier_str oai:ojs.periodicos.uninove.br:article/14537
network_acronym_str UNINOVE-5
network_name_str Revista Exacta (Online)
repository_id_str
spelling Forecast management of the refractory campaign duration in a steel industryGerenciamento preditivo da duração de campanhas refratárias em uma indústria siderúrgicaRefractory materialsMultivariate regressionLinear programming.Materiais refratáriosRegressão multivariadaProgramação linear.When it comes to steel processes, it is known that refractory materials are responsible for a significant portion of the steel production costs. For this reason, this work aimed to understand the high variability and the low durability of the refractory campaign that compose a process of continuous casting in a large LD mill in the state of Minas Gerais, identifying the relationship between the process variables so it was possible to make estimates about the duration of its refractory campaign. For the selection of the explanatory factors, a variation of the method Stepwise was used. In each step of the algorithm, a model based on linear programming was responsible for the calculations of the linear regression coefficients. In the end, a prediction model was obtained for the duration of the campaign containing 12 explanatory factors and 97.66% of statistical significance.Quando se trata de processos siderúrgicos, sabe-se que os materiais refratários são responsáveis por parcela significativa dos custos de produção do aço. Por tal motivo, este trabalho objetivou compreender a alta variabilidade e a baixa duração da campanha dos refratários que compõem um processo de lingotamento contínuo em uma aciaria LD de grande porte do estado de Minas Gerais, identificando a relação entre as variáveis intrínsecas ao equipamento de forma que seja possível a realização de estimativas sobre a duração de sua campanha. Para a seleção dos fatores explicativos, foi utilizado uma variação do método de ajuste de modelo por regressão múltipla Stepwise, sendo que, a cada passo do algoritmo citado, um modelo baseado em programação linear é responsável pelos cálculos dos coeficientes lineares de regressão. Ao final, obteve-se um modelo de predição para a duração da campanha contendo 12 fatores explicativos e possuindo 97,66\% de significância estatística.Universidade Nove de Julho - UNINOVE2020-11-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.uninove.br/exacta/article/view/1453710.5585/exactaep.v18n4.14537Exacta; v. 18 n. 4 (2020): (out./dez.); 744-7571983-93081678-5428reponame:Revista Exacta (Online)instname:Universidade Nove de Julho (UNINOVE)instacron:UNINOVEenghttps://periodicos.uninove.br/exacta/article/view/14537/8536Copyright (c) 2020 Exactainfo:eu-repo/semantics/openAccessBaesso, Dalila RodriguesBonelli Junior, Marco AntonioAlvarenga, Júlio César2021-03-19T16:45:11Zoai:ojs.periodicos.uninove.br:article/14537Revistahttps://periodicos.uninove.br/exacta/indexPRIhttps://periodicos.uninove.br/exacta/oaiexacta@uninove.br || luiz.rodrigues@uni9.pro.br || crismonteiro@uninove.br1983-93081678-5428opendoar:2021-03-19T16:45:11Revista Exacta (Online) - Universidade Nove de Julho (UNINOVE)false
dc.title.none.fl_str_mv Forecast management of the refractory campaign duration in a steel industry
Gerenciamento preditivo da duração de campanhas refratárias em uma indústria siderúrgica
title Forecast management of the refractory campaign duration in a steel industry
spellingShingle Forecast management of the refractory campaign duration in a steel industry
Baesso, Dalila Rodrigues
Refractory materials
Multivariate regression
Linear programming.
Materiais refratários
Regressão multivariada
Programação linear.
title_short Forecast management of the refractory campaign duration in a steel industry
title_full Forecast management of the refractory campaign duration in a steel industry
title_fullStr Forecast management of the refractory campaign duration in a steel industry
title_full_unstemmed Forecast management of the refractory campaign duration in a steel industry
title_sort Forecast management of the refractory campaign duration in a steel industry
author Baesso, Dalila Rodrigues
author_facet Baesso, Dalila Rodrigues
Bonelli Junior, Marco Antonio
Alvarenga, Júlio César
author_role author
author2 Bonelli Junior, Marco Antonio
Alvarenga, Júlio César
author2_role author
author
dc.contributor.author.fl_str_mv Baesso, Dalila Rodrigues
Bonelli Junior, Marco Antonio
Alvarenga, Júlio César
dc.subject.por.fl_str_mv Refractory materials
Multivariate regression
Linear programming.
Materiais refratários
Regressão multivariada
Programação linear.
topic Refractory materials
Multivariate regression
Linear programming.
Materiais refratários
Regressão multivariada
Programação linear.
description When it comes to steel processes, it is known that refractory materials are responsible for a significant portion of the steel production costs. For this reason, this work aimed to understand the high variability and the low durability of the refractory campaign that compose a process of continuous casting in a large LD mill in the state of Minas Gerais, identifying the relationship between the process variables so it was possible to make estimates about the duration of its refractory campaign. For the selection of the explanatory factors, a variation of the method Stepwise was used. In each step of the algorithm, a model based on linear programming was responsible for the calculations of the linear regression coefficients. In the end, a prediction model was obtained for the duration of the campaign containing 12 explanatory factors and 97.66% of statistical significance.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-09
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.uninove.br/exacta/article/view/14537
10.5585/exactaep.v18n4.14537
url https://periodicos.uninove.br/exacta/article/view/14537
identifier_str_mv 10.5585/exactaep.v18n4.14537
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.uninove.br/exacta/article/view/14537/8536
dc.rights.driver.fl_str_mv Copyright (c) 2020 Exacta
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 Exacta
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Nove de Julho - UNINOVE
publisher.none.fl_str_mv Universidade Nove de Julho - UNINOVE
dc.source.none.fl_str_mv Exacta; v. 18 n. 4 (2020): (out./dez.); 744-757
1983-9308
1678-5428
reponame:Revista Exacta (Online)
instname:Universidade Nove de Julho (UNINOVE)
instacron:UNINOVE
instname_str Universidade Nove de Julho (UNINOVE)
instacron_str UNINOVE
institution UNINOVE
reponame_str Revista Exacta (Online)
collection Revista Exacta (Online)
repository.name.fl_str_mv Revista Exacta (Online) - Universidade Nove de Julho (UNINOVE)
repository.mail.fl_str_mv exacta@uninove.br || luiz.rodrigues@uni9.pro.br || crismonteiro@uninove.br
_version_ 1835930915053764608