An Initial Experiment on Associations between Crimes in Brazil
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , |
| Format: | Article |
| Language: | por |
| Source: | Research, Society and Development |
| Download full: | https://rsdjournal.org/index.php/rsd/article/view/10078 |
Summary: | Context: Crime has been a problem around the world, causing damage to societies. Education, poverty, employment and climate are some of the factors that affect the crime rate, leading authorities to spend millions annually on actions to combat violence and strategic plans to prevent and reduce crime. Objective: Applying Data Science concepts to analyze government data related to crimes in Brazil. Method: Use of data mining techniques of association rules (AR), in a controlled experiment, to detect patterns between the types of crimes, as well as the relationship between the types of crime and the months of the year. Results: In the context of associations between crimes, the states with the most interesting rules were: Bahia, with 15 associations, São Paulo, with 12 associations, Goiás, with 11, and Paraná, with 9. Highlight for the association “Robbery Resulting in Death Cargo Roberry”, found for the State of Bahia, which reached 99% confidence (0.99). In the scope of associations between crimes and months of the year, Paraíba had 2 associations, Maranhão, Rondônia and São Paulo, with 1 association each. Highlight for rule “December Vehicle Steal”, found for the State of São Paulo, which reached a confidence of 84% (0.84). Conclusion: The results exposed in this research assist criminal analysts in the decision-making process to prevent and reduce crime in the country, since they can allow priority in inhibiting crimes that are antecedents of other occurrences within the same state or crimes that occur in the same period. |
| id |
UNIFEI_c74f9ffe0a707aa9da0585de67c1c17b |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/10078 |
| network_acronym_str |
UNIFEI |
| network_name_str |
Research, Society and Development |
| repository_id_str |
|
| spelling |
An Initial Experiment on Associations between Crimes in BrazilUn primer experimento sobre asociaciones entre crímenes en BrasilUm Experimento Inicial sobre Associações entre os Crimes Ocorridos no Brasil Análise criminalCriminalidadeData scienceMineração de dadosPython e R juntos.Análisis criminalCrimenCiencia de los datosProcesamiento de datosPython y R juntos.Criminal analysisCrimeData scienceData miningPython and R together.Context: Crime has been a problem around the world, causing damage to societies. Education, poverty, employment and climate are some of the factors that affect the crime rate, leading authorities to spend millions annually on actions to combat violence and strategic plans to prevent and reduce crime. Objective: Applying Data Science concepts to analyze government data related to crimes in Brazil. Method: Use of data mining techniques of association rules (AR), in a controlled experiment, to detect patterns between the types of crimes, as well as the relationship between the types of crime and the months of the year. Results: In the context of associations between crimes, the states with the most interesting rules were: Bahia, with 15 associations, São Paulo, with 12 associations, Goiás, with 11, and Paraná, with 9. Highlight for the association “Robbery Resulting in Death Cargo Roberry”, found for the State of Bahia, which reached 99% confidence (0.99). In the scope of associations between crimes and months of the year, Paraíba had 2 associations, Maranhão, Rondônia and São Paulo, with 1 association each. Highlight for rule “December Vehicle Steal”, found for the State of São Paulo, which reached a confidence of 84% (0.84). Conclusion: The results exposed in this research assist criminal analysts in the decision-making process to prevent and reduce crime in the country, since they can allow priority in inhibiting crimes that are antecedents of other occurrences within the same state or crimes that occur in the same period.Contexto: Delincuencia ha sido un problema en todo el mundo y ha causado daños a las sociedades. Educación, la pobreza, el empleo y el clima son algunos de los factores que inciden en la tasa de criminalidad, lo que lleva a las autoridades a gastar anualmente millones en acciones para combatir la violencia y planes estratégicos para prevenir y reducir la criminalidad. Objetivo: Aplicar conceptos de Data Science para analizar datos gubernamentales relacionados con delitos en Brasil. Método: Utilización de minería de datos, específicamente reglas de asociación (AR), en un experimento controlado, para detectar patrones entre los tipos de delitos, así como entre los tipos de delitos y los meses del año. Resultados: En el contexto de las asociaciones entre delitos, los estados con las reglas más interesantes fueron: Bahía, con 15 asociaciones, São Paulo, con 12, Goiás, 11, y Paraná, con 9. Destacar para la asociación “Robo seguido de muerte Robo de Carga”, encontrada para el Estado de Bahia, que alcanzó el 99% de confianza (0,99). En el ámbito de las asociaciones entre delitos y meses del año, Paraíba creció, con 2 asociaciones, Maranhão, Rondônia y São Paulo, con 1 asociación cada una. Destacado por regla “Deciembre Robo de Vehículos”, encontrado para el estado de São Paulo, que alcanzó una confianza del 84% (0,84). Conclusión: Los resultados expuestos en esta investigación ayudan analistas penales en el proceso de toma de decisiones para prevenir y reducir la delincuencia en el país, ya que pueden permitir la inhibición de delitos que son antecedentes de otros sucesos dentro del mismo estado o delitos que ocurren en el mismo período.Contexto: A criminalidade tem sido um problema ao redor do mundo, causando danos às sociedades. Educação, pobreza, emprego e clima são alguns fatores que afetam a taxa de criminalidade, levando as autoridades a gastar, anualmente, milhões com ações de combate à violência e planos estratégicos de prevenção e redução da criminalidade. Objetivo: Aplicar conceitos de Data Science para análise de dados governamentais relacionados a crimes no Brasil. Método: Uso de mineração de dados, especificamente regras de associação (RA), em um experimento controlado, para detecção de padrões entre os tipos de crimes, como também entre os tipos de crime e meses do ano. Resultados: No contexto das associações entre crimes, os estados com regras mais interessantes foram: Bahia, com 15 associações, São Paulo, com 12, Goiás, 11, e Paraná, com 9. Destaque para a associação “Latrocínio Roubo de Carga”, encontrada para o Estado da Bahia, a qual atingiu uma confiança de 99% (0.99). Já no âmbito das associações entre crimes e meses do ano, avultaram-se Paraíba, com 2 associações, Maranhão, Rondônia e São Paulo, com 1 associação cada. Destaque para regra “Dezembro Roubo de Veículo”, encontrada para o Estado de São Paulo, que alcançou uma confiança de 84% (0,84). Conclusão: Os resultados expostos nesta pesquisa auxiliam analistas criminais no processo de tomada de decisão para prevenção e redução da criminalidade no país, uma vez que podem permitir a inibição de crimes que são antecedentes de outras ocorrências dentro do mesmo estado ou de crimes que ocorrem num mesmo período.Research, Society and Development2020-11-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1007810.33448/rsd-v9i11.10078Research, Society and Development; Vol. 9 No. 11; e41791110078Research, Society and Development; Vol. 9 Núm. 11; e41791110078Research, Society and Development; v. 9 n. 11; e417911100782525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/10078/8937Copyright (c) 2020 Wesckley Faria Gomes; Methanias Colaço Júnior; Kleber Henrique de Jesus Pradohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessGomes, Wesckley FariaColaço Júnior, MethaniasPrado, Kleber Henrique de Jesus2020-12-10T23:37:57Zoai:ojs.pkp.sfu.ca:article/10078Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:13.091346Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
| dc.title.none.fl_str_mv |
An Initial Experiment on Associations between Crimes in Brazil Un primer experimento sobre asociaciones entre crímenes en Brasil Um Experimento Inicial sobre Associações entre os Crimes Ocorridos no Brasil |
| title |
An Initial Experiment on Associations between Crimes in Brazil |
| spellingShingle |
An Initial Experiment on Associations between Crimes in Brazil Gomes, Wesckley Faria Análise criminal Criminalidade Data science Mineração de dados Python e R juntos. Análisis criminal Crimen Ciencia de los datos Procesamiento de datos Python y R juntos. Criminal analysis Crime Data science Data mining Python and R together. |
| title_short |
An Initial Experiment on Associations between Crimes in Brazil |
| title_full |
An Initial Experiment on Associations between Crimes in Brazil |
| title_fullStr |
An Initial Experiment on Associations between Crimes in Brazil |
| title_full_unstemmed |
An Initial Experiment on Associations between Crimes in Brazil |
| title_sort |
An Initial Experiment on Associations between Crimes in Brazil |
| author |
Gomes, Wesckley Faria |
| author_facet |
Gomes, Wesckley Faria Colaço Júnior, Methanias Prado, Kleber Henrique de Jesus |
| author_role |
author |
| author2 |
Colaço Júnior, Methanias Prado, Kleber Henrique de Jesus |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Gomes, Wesckley Faria Colaço Júnior, Methanias Prado, Kleber Henrique de Jesus |
| dc.subject.por.fl_str_mv |
Análise criminal Criminalidade Data science Mineração de dados Python e R juntos. Análisis criminal Crimen Ciencia de los datos Procesamiento de datos Python y R juntos. Criminal analysis Crime Data science Data mining Python and R together. |
| topic |
Análise criminal Criminalidade Data science Mineração de dados Python e R juntos. Análisis criminal Crimen Ciencia de los datos Procesamiento de datos Python y R juntos. Criminal analysis Crime Data science Data mining Python and R together. |
| description |
Context: Crime has been a problem around the world, causing damage to societies. Education, poverty, employment and climate are some of the factors that affect the crime rate, leading authorities to spend millions annually on actions to combat violence and strategic plans to prevent and reduce crime. Objective: Applying Data Science concepts to analyze government data related to crimes in Brazil. Method: Use of data mining techniques of association rules (AR), in a controlled experiment, to detect patterns between the types of crimes, as well as the relationship between the types of crime and the months of the year. Results: In the context of associations between crimes, the states with the most interesting rules were: Bahia, with 15 associations, São Paulo, with 12 associations, Goiás, with 11, and Paraná, with 9. Highlight for the association “Robbery Resulting in Death Cargo Roberry”, found for the State of Bahia, which reached 99% confidence (0.99). In the scope of associations between crimes and months of the year, Paraíba had 2 associations, Maranhão, Rondônia and São Paulo, with 1 association each. Highlight for rule “December Vehicle Steal”, found for the State of São Paulo, which reached a confidence of 84% (0.84). Conclusion: The results exposed in this research assist criminal analysts in the decision-making process to prevent and reduce crime in the country, since they can allow priority in inhibiting crimes that are antecedents of other occurrences within the same state or crimes that occur in the same period. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-11-19 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10078 10.33448/rsd-v9i11.10078 |
| url |
https://rsdjournal.org/index.php/rsd/article/view/10078 |
| identifier_str_mv |
10.33448/rsd-v9i11.10078 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/10078/8937 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2020 Wesckley Faria Gomes; Methanias Colaço Júnior; Kleber Henrique de Jesus Prado https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2020 Wesckley Faria Gomes; Methanias Colaço Júnior; Kleber Henrique de Jesus Prado https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Research, Society and Development |
| publisher.none.fl_str_mv |
Research, Society and Development |
| dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 11; e41791110078 Research, Society and Development; Vol. 9 Núm. 11; e41791110078 Research, Society and Development; v. 9 n. 11; e41791110078 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
| instname_str |
Universidade Federal de Itajubá (UNIFEI) |
| instacron_str |
UNIFEI |
| institution |
UNIFEI |
| reponame_str |
Research, Society and Development |
| collection |
Research, Society and Development |
| repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
| repository.mail.fl_str_mv |
rsd.articles@gmail.com |
| _version_ |
1831934788480532480 |