Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Format: | Master thesis |
| Language: | por |
| Source: | Biblioteca Digital de Teses e Dissertações da UNIFAL |
| Download full: | https://repositorio.unifal-mg.edu.br/handle/123456789/1329 |
Summary: | Brazil’s main source of energy supply is hydroelectric, due mainly to its large hydro capacity. Understanding the flow behavior of its basins is a fundamental factor to optimize the production of this type of energy, but the present historical data are limited, becoming a hindrance to the study, given its importance in the planning of electric energy production. One solution that has been used in the recent literature is the generation of synthetic series. In this work, the following techniques were used for the synthetic generation of the flows of the Água Vermelha and Volta Grande stations: SynTise, model presented in citeonline Denaxas (2015), support vector machines (SVM), multilayer perceptron (MLP), random forest (RF) and the autoregressive model (AR). Synthetic series equivalent to 2000 years were generated for all these reservoirs. The work analyzed four different proposals for the selection of the random component of the AR, MLP, SVM and RF models, which are: through a symmetric probability distribution, through an asymmetric probability distribution, in chronological order and through the estimated residuals. The new random component proposals and the classical selection method, the random selection of the residues, were evaluated for the two stations, as well as SynTise, which was adjusted to generate synthetic monthly series for reservoir flow. The results showed that, for the two stations evaluated, models with random component over time were better options than the classic model of random component randomly selected in all the techniques evaluated. In the comparison between the best results of each technique, it was obtained that for the Volta Grande station, the SVM presented the best results, while for Água Vermelha, the MLP was better among all the models |
| id |
UNIFAL_db382ad84d4da3972e6efdadf534b8e0 |
|---|---|
| oai_identifier_str |
oai:repositorio.unifal-mg.edu.br:123456789/1329 |
| network_acronym_str |
UNIFAL |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| repository_id_str |
|
| spelling |
Gomes, Victor Silveirahttp://lattes.cnpq.br/8918198224706238Beijo, Luiz AlbertoGonzaga, Flávio BarbieriOhishi, TakaakiSalgado, Ricardo Menezeshttp://lattes.cnpq.br/83148916429656372019-03-01T14:16:39Z2018-06-18GOMES, Victor Silveira. Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico. 2018. 160 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.https://repositorio.unifal-mg.edu.br/handle/123456789/1329Brazil’s main source of energy supply is hydroelectric, due mainly to its large hydro capacity. Understanding the flow behavior of its basins is a fundamental factor to optimize the production of this type of energy, but the present historical data are limited, becoming a hindrance to the study, given its importance in the planning of electric energy production. One solution that has been used in the recent literature is the generation of synthetic series. In this work, the following techniques were used for the synthetic generation of the flows of the Água Vermelha and Volta Grande stations: SynTise, model presented in citeonline Denaxas (2015), support vector machines (SVM), multilayer perceptron (MLP), random forest (RF) and the autoregressive model (AR). Synthetic series equivalent to 2000 years were generated for all these reservoirs. The work analyzed four different proposals for the selection of the random component of the AR, MLP, SVM and RF models, which are: through a symmetric probability distribution, through an asymmetric probability distribution, in chronological order and through the estimated residuals. The new random component proposals and the classical selection method, the random selection of the residues, were evaluated for the two stations, as well as SynTise, which was adjusted to generate synthetic monthly series for reservoir flow. The results showed that, for the two stations evaluated, models with random component over time were better options than the classic model of random component randomly selected in all the techniques evaluated. In the comparison between the best results of each technique, it was obtained that for the Volta Grande station, the SVM presented the best results, while for Água Vermelha, the MLP was better among all the modelsO Brasil tem como principal fonte de fornecimento de energia a hidroelétrica, devido principalmente à sua grande capacidade hídrica. Entender o comportamento das vazões de suas bacias é um fator fundamental para otimização da produção desse tipo energia, porém os dados históricos presentes são limitados, tornando-se um empecilho para o estudo, dado a importância dele no planejamento da produção de energia elétrica. Uma solução que vem sendo utilizada na literatura recente é a geração de série sintética. Neste trabalho, as seguinte técnicas foram utilizadas para geração sintética das vazões dos postos de Água Vermelha e Volta Grande: o SynTise, modelo apresentado em Denaxas et al. (2015), máquinas de vetores de suporte (SVM), redes neurais multicamadas (MLP), random forest (RF) e o modelo autorregressivo (AR). Foram geradas séries sintéticas equivalentes a 2000 anos em ambos reservatórios. O trabalho analisou quatro diferentes propostas para a seleção do componente aleatória dos modelos AR, MLP, SVM e RF que são: através de uma distribuição de probabilidade simétrica, através de uma distribuição de probabilidade assimétrica, pela ordem cronológica e através dos resíduos estimados. As novas propostas de componentes aleatórios e o método de seleção clássico, a seleção aleatória dos resíduos, foram avaliadas para os dois postos, assim como o SynTise, que foi ajustado para gerar séries sintéticas mensais para vazão dos reservatórios. Os resultados mostraram que, para os dois postos avaliados, modelos com componente aleatória ao longo do tempo foram opções melhores que o modelo clássico de componente aleatória selecionada aleatoriamente em todos as técnicas avaliadas. Na comparação entre os melhores resultados de cada técnicas, obteve-se que para o posto de Volta Grande, o SVM apresentou os melhores resultados, enquanto para Água Vermelha, o MLP foi melhor entre todos os modelos.Programa Institucional de Bolsas de Pós-Graduação - PIB-PÓSapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Aprendizado de computadorModelo de MarkovHidrologiaModelos em séries temporaisSérie sintéticaPROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASModelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétricoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632008119421590424746971reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALGomes, Victor SilveiraLICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/4f9b7411-001b-4703-8399-5cef964962b1/download31555718c4fc75849dd08f27935d4f6bMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/a5b70170-179f-4941-9b70-27043dcdf6cd/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/f3594789-4edd-449e-b905-72e3490b2433/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/a7f9d76c-4700-439c-b4d6-2bee3515b4a4/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertacao Victor Silveira Gomes.pdfDissertacao Victor Silveira Gomes.pdfapplication/pdf4310536https://repositorio.unifal-mg.edu.br/bitstreams/78660aef-f243-41e6-a502-b586a72f71b4/download26599f4d60c035839c4e4b4c1223b9e0MD57TEXTDissertacao Victor Silveira Gomes.pdf.txtDissertacao Victor Silveira Gomes.pdf.txtExtracted texttext/plain106682https://repositorio.unifal-mg.edu.br/bitstreams/991c946f-3f0a-4a8a-8c9e-e4ab2bbacbe0/downloada926ff3ee10653b06b654f496e815ae7MD58THUMBNAILDissertacao Victor Silveira Gomes.pdf.jpgDissertacao Victor Silveira Gomes.pdf.jpgGenerated Thumbnailimage/jpeg2521https://repositorio.unifal-mg.edu.br/bitstreams/faa3926a-ef97-4c18-9261-6e531453b512/download6b643221d7046cc9f0d640a9f15afaf4MD59123456789/13292025-04-14 17:38:32.374http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/1329https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T20:38:32Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.pt-BR.fl_str_mv |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| title |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| spellingShingle |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico Gomes, Victor Silveira Aprendizado de computador Modelo de Markov Hidrologia Modelos em séries temporais Série sintética PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| title_short |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| title_full |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| title_fullStr |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| title_full_unstemmed |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| title_sort |
Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico |
| author |
Gomes, Victor Silveira |
| author_facet |
Gomes, Victor Silveira |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Gomes, Victor Silveira |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8918198224706238 |
| dc.contributor.advisor-co1.fl_str_mv |
Beijo, Luiz Alberto |
| dc.contributor.referee1.fl_str_mv |
Gonzaga, Flávio Barbieri |
| dc.contributor.referee2.fl_str_mv |
Ohishi, Takaaki |
| dc.contributor.advisor1.fl_str_mv |
Salgado, Ricardo Menezes |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8314891642965637 |
| contributor_str_mv |
Beijo, Luiz Alberto Gonzaga, Flávio Barbieri Ohishi, Takaaki Salgado, Ricardo Menezes |
| dc.subject.por.fl_str_mv |
Aprendizado de computador Modelo de Markov Hidrologia Modelos em séries temporais Série sintética |
| topic |
Aprendizado de computador Modelo de Markov Hidrologia Modelos em séries temporais Série sintética PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| dc.subject.cnpq.fl_str_mv |
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| description |
Brazil’s main source of energy supply is hydroelectric, due mainly to its large hydro capacity. Understanding the flow behavior of its basins is a fundamental factor to optimize the production of this type of energy, but the present historical data are limited, becoming a hindrance to the study, given its importance in the planning of electric energy production. One solution that has been used in the recent literature is the generation of synthetic series. In this work, the following techniques were used for the synthetic generation of the flows of the Água Vermelha and Volta Grande stations: SynTise, model presented in citeonline Denaxas (2015), support vector machines (SVM), multilayer perceptron (MLP), random forest (RF) and the autoregressive model (AR). Synthetic series equivalent to 2000 years were generated for all these reservoirs. The work analyzed four different proposals for the selection of the random component of the AR, MLP, SVM and RF models, which are: through a symmetric probability distribution, through an asymmetric probability distribution, in chronological order and through the estimated residuals. The new random component proposals and the classical selection method, the random selection of the residues, were evaluated for the two stations, as well as SynTise, which was adjusted to generate synthetic monthly series for reservoir flow. The results showed that, for the two stations evaluated, models with random component over time were better options than the classic model of random component randomly selected in all the techniques evaluated. In the comparison between the best results of each technique, it was obtained that for the Volta Grande station, the SVM presented the best results, while for Água Vermelha, the MLP was better among all the models |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018-06-18 |
| dc.date.accessioned.fl_str_mv |
2019-03-01T14:16:39Z |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
GOMES, Victor Silveira. Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico. 2018. 160 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifal-mg.edu.br/handle/123456789/1329 |
| identifier_str_mv |
GOMES, Victor Silveira. Modelos baseados em aprendizado de máquina para geração de séries sintéticas do setor elétrico. 2018. 160 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018. |
| url |
https://repositorio.unifal-mg.edu.br/handle/123456789/1329 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.department.fl_str_mv |
-8156311678363143599 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.cnpq.fl_str_mv |
-2104850853990363200 |
| dc.relation.sponsorship.fl_str_mv |
8119421590424746971 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística Aplicada e Biometria |
| dc.publisher.initials.fl_str_mv |
UNIFAL-MG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL instname:Universidade Federal de Alfenas (UNIFAL) instacron:UNIFAL |
| instname_str |
Universidade Federal de Alfenas (UNIFAL) |
| instacron_str |
UNIFAL |
| institution |
UNIFAL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| collection |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| bitstream.url.fl_str_mv |
https://repositorio.unifal-mg.edu.br/bitstreams/4f9b7411-001b-4703-8399-5cef964962b1/download https://repositorio.unifal-mg.edu.br/bitstreams/a5b70170-179f-4941-9b70-27043dcdf6cd/download https://repositorio.unifal-mg.edu.br/bitstreams/f3594789-4edd-449e-b905-72e3490b2433/download https://repositorio.unifal-mg.edu.br/bitstreams/a7f9d76c-4700-439c-b4d6-2bee3515b4a4/download https://repositorio.unifal-mg.edu.br/bitstreams/78660aef-f243-41e6-a502-b586a72f71b4/download https://repositorio.unifal-mg.edu.br/bitstreams/991c946f-3f0a-4a8a-8c9e-e4ab2bbacbe0/download https://repositorio.unifal-mg.edu.br/bitstreams/faa3926a-ef97-4c18-9261-6e531453b512/download |
| bitstream.checksum.fl_str_mv |
31555718c4fc75849dd08f27935d4f6b 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 26599f4d60c035839c4e4b4c1223b9e0 a926ff3ee10653b06b654f496e815ae7 6b643221d7046cc9f0d640a9f15afaf4 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL) |
| repository.mail.fl_str_mv |
bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br |
| _version_ |
1850508345018941440 |