Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , , |
Format: | Article |
Language: | eng |
Source: | The Journal of venomous animals and toxins including tropical diseases (Online) |
Download full: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992018000100314 |
Summary: | Abstract Background: Fire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins. Tropical fire ant Solenopsis geminata is an important stinging ant species that causes anaphylaxis and serious medical problems. Although the biological activities of allergenic venom proteins that are unique to ant venom, particularly Solenopsis 2 and 4, are still unknown, these proteins are believed to play important roles in mediating the effects of the piperidine derivatives in the venom. Methods: In the present study, the cDNA cloning, sequencing and three-dimensional structure of Sol g 4.1 venom protein are described. The recombinant Sol g 4.1 protein (rSol g 4.1) was produced in E. coli , and its possible function as a hydrophobic binding protein was characterized by paralyzing crickets using the 50% piperidine dose (PD50). Moreover, an antiserum was produced in mice to determine the allergenic properties of Sol g 4.1, and the antiserum was capable of binding to Sol g 4.1, as determined by Western blotting. Results: The molecular weight of Sol g 4.1 protein is 16 kDa, as determined by SDS-PAGE. The complete cDNA is 414 bp in length and contains a leader sequence of 19 amino acids. The protein consists of six cysteines that presumably form three disulfide bonds, based on a predicted three-dimensional model, creating the interior hydrophobic pocket and stabilizing the structure. The rSol g 4.1 protein was expressed in inclusion bodies, as determined by SDS-PAGE. Dialysis techniques were used to refold the recombinant protein into the native form. Its secondary structure, which primarily consists of α-helices, was confirmed by circular dichroism analysis, and the three-dimensional model was also verified. The results of allergenic analysis performed on mice showed that the obtained protein was predicted to be allergenically active. Moreover, we report on the possible role of the Sol g 4.1 venom protein, which significantly reduced the PD50 from 0.027 to 0.013% in paralyzed crickets via synergistic effects after interactions with piperidine alkaloids. Conclusions: The primary structure of Sol g 4.1 showed high similarity to that of venom proteins in the Solenopsis 2 and 4 family. Those proteins are life-threatening and produce IgE-mediated anaphylactic reactions in allergic individuals. The possible function of this protein is the binding of the interior hydrophobic pockets with piperidine alkaloids, as determined by the analysis of the structural model and PD50 test. |
id |
UNESP-11_a33e597a9ec17833f97f346728ec4de0 |
---|---|
oai_identifier_str |
oai:scielo:S1678-91992018000100314 |
network_acronym_str |
UNESP-11 |
network_name_str |
The Journal of venomous animals and toxins including tropical diseases (Online) |
repository_id_str |
|
spelling |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminataFire antSol g 4.1 proteinAllergenVenom proteinStinging antAbstract Background: Fire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins. Tropical fire ant Solenopsis geminata is an important stinging ant species that causes anaphylaxis and serious medical problems. Although the biological activities of allergenic venom proteins that are unique to ant venom, particularly Solenopsis 2 and 4, are still unknown, these proteins are believed to play important roles in mediating the effects of the piperidine derivatives in the venom. Methods: In the present study, the cDNA cloning, sequencing and three-dimensional structure of Sol g 4.1 venom protein are described. The recombinant Sol g 4.1 protein (rSol g 4.1) was produced in E. coli , and its possible function as a hydrophobic binding protein was characterized by paralyzing crickets using the 50% piperidine dose (PD50). Moreover, an antiserum was produced in mice to determine the allergenic properties of Sol g 4.1, and the antiserum was capable of binding to Sol g 4.1, as determined by Western blotting. Results: The molecular weight of Sol g 4.1 protein is 16 kDa, as determined by SDS-PAGE. The complete cDNA is 414 bp in length and contains a leader sequence of 19 amino acids. The protein consists of six cysteines that presumably form three disulfide bonds, based on a predicted three-dimensional model, creating the interior hydrophobic pocket and stabilizing the structure. The rSol g 4.1 protein was expressed in inclusion bodies, as determined by SDS-PAGE. Dialysis techniques were used to refold the recombinant protein into the native form. Its secondary structure, which primarily consists of α-helices, was confirmed by circular dichroism analysis, and the three-dimensional model was also verified. The results of allergenic analysis performed on mice showed that the obtained protein was predicted to be allergenically active. Moreover, we report on the possible role of the Sol g 4.1 venom protein, which significantly reduced the PD50 from 0.027 to 0.013% in paralyzed crickets via synergistic effects after interactions with piperidine alkaloids. Conclusions: The primary structure of Sol g 4.1 showed high similarity to that of venom proteins in the Solenopsis 2 and 4 family. Those proteins are life-threatening and produce IgE-mediated anaphylactic reactions in allergic individuals. The possible function of this protein is the binding of the interior hydrophobic pockets with piperidine alkaloids, as determined by the analysis of the structural model and PD50 test.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992018000100314Journal of Venomous Animals and Toxins including Tropical Diseases v.24 2018reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1186/s40409-018-0159-6info:eu-repo/semantics/openAccessSrisong,HathairatSukprasert,SophidaKlaynongsruang,SompongDaduang,JureerutDaduang,Sakdaeng2018-09-19T00:00:00Zoai:scielo:S1678-91992018000100314Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2018-09-19T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
title |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
spellingShingle |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata Srisong,Hathairat Fire ant Sol g 4.1 protein Allergen Venom protein Stinging ant |
title_short |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
title_full |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
title_fullStr |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
title_full_unstemmed |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
title_sort |
Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata |
author |
Srisong,Hathairat |
author_facet |
Srisong,Hathairat Sukprasert,Sophida Klaynongsruang,Sompong Daduang,Jureerut Daduang,Sakda |
author_role |
author |
author2 |
Sukprasert,Sophida Klaynongsruang,Sompong Daduang,Jureerut Daduang,Sakda |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Srisong,Hathairat Sukprasert,Sophida Klaynongsruang,Sompong Daduang,Jureerut Daduang,Sakda |
dc.subject.por.fl_str_mv |
Fire ant Sol g 4.1 protein Allergen Venom protein Stinging ant |
topic |
Fire ant Sol g 4.1 protein Allergen Venom protein Stinging ant |
description |
Abstract Background: Fire ant venom is a complex mixture consisting of basic piperidine alkaloids, various biologically active peptides and protein components, including a variety of major allergenic proteins. Tropical fire ant Solenopsis geminata is an important stinging ant species that causes anaphylaxis and serious medical problems. Although the biological activities of allergenic venom proteins that are unique to ant venom, particularly Solenopsis 2 and 4, are still unknown, these proteins are believed to play important roles in mediating the effects of the piperidine derivatives in the venom. Methods: In the present study, the cDNA cloning, sequencing and three-dimensional structure of Sol g 4.1 venom protein are described. The recombinant Sol g 4.1 protein (rSol g 4.1) was produced in E. coli , and its possible function as a hydrophobic binding protein was characterized by paralyzing crickets using the 50% piperidine dose (PD50). Moreover, an antiserum was produced in mice to determine the allergenic properties of Sol g 4.1, and the antiserum was capable of binding to Sol g 4.1, as determined by Western blotting. Results: The molecular weight of Sol g 4.1 protein is 16 kDa, as determined by SDS-PAGE. The complete cDNA is 414 bp in length and contains a leader sequence of 19 amino acids. The protein consists of six cysteines that presumably form three disulfide bonds, based on a predicted three-dimensional model, creating the interior hydrophobic pocket and stabilizing the structure. The rSol g 4.1 protein was expressed in inclusion bodies, as determined by SDS-PAGE. Dialysis techniques were used to refold the recombinant protein into the native form. Its secondary structure, which primarily consists of α-helices, was confirmed by circular dichroism analysis, and the three-dimensional model was also verified. The results of allergenic analysis performed on mice showed that the obtained protein was predicted to be allergenically active. Moreover, we report on the possible role of the Sol g 4.1 venom protein, which significantly reduced the PD50 from 0.027 to 0.013% in paralyzed crickets via synergistic effects after interactions with piperidine alkaloids. Conclusions: The primary structure of Sol g 4.1 showed high similarity to that of venom proteins in the Solenopsis 2 and 4 family. Those proteins are life-threatening and produce IgE-mediated anaphylactic reactions in allergic individuals. The possible function of this protein is the binding of the interior hydrophobic pockets with piperidine alkaloids, as determined by the analysis of the structural model and PD50 test. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992018000100314 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992018000100314 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1186/s40409-018-0159-6 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) |
publisher.none.fl_str_mv |
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) |
dc.source.none.fl_str_mv |
Journal of Venomous Animals and Toxins including Tropical Diseases v.24 2018 reponame:The Journal of venomous animals and toxins including tropical diseases (Online) instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
The Journal of venomous animals and toxins including tropical diseases (Online) |
collection |
The Journal of venomous animals and toxins including tropical diseases (Online) |
repository.name.fl_str_mv |
The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
||editorial@jvat.org.br |
_version_ |
1748958540495585280 |