PCA statistical method for classification of sensors

Bibliographic Details
Main Author: Paula, Jessica Fernandes de [UNIFESP]
Publication Date: 2022
Format: Master thesis
Language: eng
Source: Repositório Institucional da UNIFESP
Download full: https://repositorio.unifesp.br/handle/11600/67178
Summary: A large number of the global population suffers from infectious diseases, so studies in the health area aimed at identifying these diseases are of great importance. Some diseases have a long immunological window, where antibodies take a long time to be identified. Rapid detection tests are essential for disease control and eradication. A possible identification and classification method uses the statistical analysis performed by the Principal Component Analysis (PCA), through which we can reduce the number of variables and identify the presence of these antibodies. This work aims to classify immunosensors according to the antibody detected, analyzing their responses in relation to impedance and frequency using the PCA statistical method. The study was based on data collected from two immunosensors, HCV sensor and HIV sensor (Hepatitis C virus and Human Immunodeficiency Virus), analyzing their response as a function of frequency. For the PCA statistical method, an interactive laboratory was adopted with Jupyter Notebook, Python, using libraries known as Pandas, Plotly, NumPyand Scikit-learn. This study analyzed several data and variables from the dataset of both sensors to build models with the PCA statistical method, it was possible to separate and classify the HIV and HCV sensors at specific frequencies. The PCA analysis results for the selected datasets showed a relevant classification using PC1 and PC2, with a variance of the original data above 90%.
id UFSP_75b40d6972f1fc249496f79fefcf433d
oai_identifier_str oai:repositorio.unifesp.br/:11600/67178
network_acronym_str UFSP
network_name_str Repositório Institucional da UNIFESP
repository_id_str 3465
spelling PCA statistical method for classification of sensorsMétodo estatístico PCA para classificação de sensoresPCAHIVHCVsensorantibodyantigenstatisticsA large number of the global population suffers from infectious diseases, so studies in the health area aimed at identifying these diseases are of great importance. Some diseases have a long immunological window, where antibodies take a long time to be identified. Rapid detection tests are essential for disease control and eradication. A possible identification and classification method uses the statistical analysis performed by the Principal Component Analysis (PCA), through which we can reduce the number of variables and identify the presence of these antibodies. This work aims to classify immunosensors according to the antibody detected, analyzing their responses in relation to impedance and frequency using the PCA statistical method. The study was based on data collected from two immunosensors, HCV sensor and HIV sensor (Hepatitis C virus and Human Immunodeficiency Virus), analyzing their response as a function of frequency. For the PCA statistical method, an interactive laboratory was adopted with Jupyter Notebook, Python, using libraries known as Pandas, Plotly, NumPyand Scikit-learn. This study analyzed several data and variables from the dataset of both sensors to build models with the PCA statistical method, it was possible to separate and classify the HIV and HCV sensors at specific frequencies. The PCA analysis results for the selected datasets showed a relevant classification using PC1 and PC2, with a variance of the original data above 90%.Uma grande parte da população mundial sofre com doenças infecciosas, por isso estudos na área da saúde que visem a identificação dessas doenças são de grande importância. Algumas doenças têm uma longa janela imunológica, onde os anticorpos demoram muito para serem identificados. Testes de detecção rápida são essenciais para o controle e erradicação da doença. Um possível método de identificação e classificação utiliza a análise estatística Principal Component Analysis (PCA), por meio da qual podemos reduzir o número de variáveis e identificar a presença desses anticorpos. O objetivo deste trabalho é classificar os imunossensores de acordo com o anticorpo detectado, analisando suas respostas em relação à impedância e frequência utilizando o método estatístico PCA. O estudo foi baseado em dados coletados de dois imunossensores, sensor HCV e sensor HIV (Vírus da Hepatite C e Vírus da Imunodeficiência Humana), analisando sua resposta em função da frequência. Para o método estatístico PCA foi adotado um laboratório interativo com Jupyter Notebook, Python, utilizando bibliotecas conhecidas como Pandas, Plotly, NumPy e Scikit-learn. Este estudo analisou diversos dados e variáveis do conjunto de dados de ambos os sensores para construir modelos com o método estatístico PCA, foi possível separar e classificar os sensores HIV e HCV em determinadas frequências. Os resultados da análise por PCA para os conjuntos de dados selecionados mostraram uma classificação relevante usando PC1 e PC2, com uma variância dos dados originais acima de 90%.Não recebi financiamentoUniversidade Federal de São PauloAntonelli, Eduardo [UNIFESP]http://lattes.cnpq.br/8535325155568005http://lattes.cnpq.br/9339565565705439Paula, Jessica Fernandes de [UNIFESP]2023-03-03T12:27:14Z2023-03-03T12:27:14Z2022-11-25info:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion117 f.application/pdfhttps://repositorio.unifesp.br/handle/11600/67178enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UNIFESPinstname:Universidade Federal de São Paulo (UNIFESP)instacron:UNIFESP2024-08-12T13:55:17Zoai:repositorio.unifesp.br/:11600/67178Repositório InstitucionalPUBhttp://www.repositorio.unifesp.br/oai/requestbiblioteca.csp@unifesp.bropendoar:34652024-08-12T13:55:17Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)false
dc.title.none.fl_str_mv PCA statistical method for classification of sensors
Método estatístico PCA para classificação de sensores
title PCA statistical method for classification of sensors
spellingShingle PCA statistical method for classification of sensors
Paula, Jessica Fernandes de [UNIFESP]
PCA
HIV
HCV
sensor
antibody
antigen
statistics
title_short PCA statistical method for classification of sensors
title_full PCA statistical method for classification of sensors
title_fullStr PCA statistical method for classification of sensors
title_full_unstemmed PCA statistical method for classification of sensors
title_sort PCA statistical method for classification of sensors
author Paula, Jessica Fernandes de [UNIFESP]
author_facet Paula, Jessica Fernandes de [UNIFESP]
author_role author
dc.contributor.none.fl_str_mv Antonelli, Eduardo [UNIFESP]
http://lattes.cnpq.br/8535325155568005
http://lattes.cnpq.br/9339565565705439
dc.contributor.author.fl_str_mv Paula, Jessica Fernandes de [UNIFESP]
dc.subject.por.fl_str_mv PCA
HIV
HCV
sensor
antibody
antigen
statistics
topic PCA
HIV
HCV
sensor
antibody
antigen
statistics
description A large number of the global population suffers from infectious diseases, so studies in the health area aimed at identifying these diseases are of great importance. Some diseases have a long immunological window, where antibodies take a long time to be identified. Rapid detection tests are essential for disease control and eradication. A possible identification and classification method uses the statistical analysis performed by the Principal Component Analysis (PCA), through which we can reduce the number of variables and identify the presence of these antibodies. This work aims to classify immunosensors according to the antibody detected, analyzing their responses in relation to impedance and frequency using the PCA statistical method. The study was based on data collected from two immunosensors, HCV sensor and HIV sensor (Hepatitis C virus and Human Immunodeficiency Virus), analyzing their response as a function of frequency. For the PCA statistical method, an interactive laboratory was adopted with Jupyter Notebook, Python, using libraries known as Pandas, Plotly, NumPyand Scikit-learn. This study analyzed several data and variables from the dataset of both sensors to build models with the PCA statistical method, it was possible to separate and classify the HIV and HCV sensors at specific frequencies. The PCA analysis results for the selected datasets showed a relevant classification using PC1 and PC2, with a variance of the original data above 90%.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-25
2023-03-03T12:27:14Z
2023-03-03T12:27:14Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.unifesp.br/handle/11600/67178
url https://repositorio.unifesp.br/handle/11600/67178
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 117 f.
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de São Paulo
publisher.none.fl_str_mv Universidade Federal de São Paulo
dc.source.none.fl_str_mv reponame:Repositório Institucional da UNIFESP
instname:Universidade Federal de São Paulo (UNIFESP)
instacron:UNIFESP
instname_str Universidade Federal de São Paulo (UNIFESP)
instacron_str UNIFESP
institution UNIFESP
reponame_str Repositório Institucional da UNIFESP
collection Repositório Institucional da UNIFESP
repository.name.fl_str_mv Repositório Institucional da UNIFESP - Universidade Federal de São Paulo (UNIFESP)
repository.mail.fl_str_mv biblioteca.csp@unifesp.br
_version_ 1841453514662871040