Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom

Bibliographic Details
Main Author: Fischer, Ivania Aline
Publication Date: 2020
Format: Master thesis
Language: por
Source: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000011x9k
Download full: http://repositorio.ufsm.br/handle/1/22278
Summary: The Internet of Things (IoT) has presented the development of applications focused on smart cities, transport, health and education with Smart Classrooms. That said, the increasing rates and high demands for real-time services, and as a consequence, the latency of communications has become an important issue. As Cloud Computing (CC) does not provide the necessary support for this type of service, Computing in Fog (FC) is highlighted as a means of helping the latency problem faced. In addition, Fog subsidizes the use of basic characteristics of IoT environments such as mobility treatment, distributed computing layout and device heterogeneity. In this work, the focus is related to IoT in education specifically in the integration of a Smart Classroom with Fog in order to acquire greater agility in communications and decrease the use of bandwidth, which is a precarious factor in public education institutions. With a focus on Fog and its proper functioning in Smart Classroom, this work has the objective of acquiring satisfactory levels of operationality. To obtain this item a model of proactive management of Fog nodes is proposed, called MagProFog which is divided into three modules, the Database module, Monitoring module (developed in the FogTorch simulator) and the Management Interface module. The management has the purpose of identifying and preventing possible future irregularities, its identification is acquired by Fog is overhead rate, correlated with the storage and processing usage rates. The prevention of problems caused by Fog is irregularity is intrinsically correlated with obtaining possible neighboring Fogs nodes for replacement before the irregularity impairs the performance of the Smart Classroom. The definition of the Fog node that best meets the objective above is obtained through a computational analysis of performance, the use load of Fog and the latency of the replacement process. The work validation tests are applied in a simulation environment (using the three management modules), where the communication data used by Smart Classroom is real acquired by its prototyping. In this way, we seek to identify the operational levels of Smart Classroom acquired in the application of a set of Fogs irregularities resolution policies coupled with the proposed computational management and analysis. The acquired results are promising, when applied to an environment that demonstrates irregularity, a percentage of 100% of operability is achieved in a set of Smart Classrooms on a Smart Campus.
id UFSM_fd8af0a1e20a7e348e1f86bc0c91da60
oai_identifier_str oai:repositorio.ufsm.br:1/22278
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart ClassroomManagement proactive based on computational analysis of Fog Nodes that integrate Smart ClassroomGerenciamento da computação em névoaComputação em névoaSala de aula inteligenteAnálise computacional nodos da computação em névoaRedundância de nodos da computação em névoaMagProFogManagement fog computingFog computingSmart classroomComputational analysis nodes fogFog redundacyCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOThe Internet of Things (IoT) has presented the development of applications focused on smart cities, transport, health and education with Smart Classrooms. That said, the increasing rates and high demands for real-time services, and as a consequence, the latency of communications has become an important issue. As Cloud Computing (CC) does not provide the necessary support for this type of service, Computing in Fog (FC) is highlighted as a means of helping the latency problem faced. In addition, Fog subsidizes the use of basic characteristics of IoT environments such as mobility treatment, distributed computing layout and device heterogeneity. In this work, the focus is related to IoT in education specifically in the integration of a Smart Classroom with Fog in order to acquire greater agility in communications and decrease the use of bandwidth, which is a precarious factor in public education institutions. With a focus on Fog and its proper functioning in Smart Classroom, this work has the objective of acquiring satisfactory levels of operationality. To obtain this item a model of proactive management of Fog nodes is proposed, called MagProFog which is divided into three modules, the Database module, Monitoring module (developed in the FogTorch simulator) and the Management Interface module. The management has the purpose of identifying and preventing possible future irregularities, its identification is acquired by Fog is overhead rate, correlated with the storage and processing usage rates. The prevention of problems caused by Fog is irregularity is intrinsically correlated with obtaining possible neighboring Fogs nodes for replacement before the irregularity impairs the performance of the Smart Classroom. The definition of the Fog node that best meets the objective above is obtained through a computational analysis of performance, the use load of Fog and the latency of the replacement process. The work validation tests are applied in a simulation environment (using the three management modules), where the communication data used by Smart Classroom is real acquired by its prototyping. In this way, we seek to identify the operational levels of Smart Classroom acquired in the application of a set of Fogs irregularities resolution policies coupled with the proposed computational management and analysis. The acquired results are promising, when applied to an environment that demonstrates irregularity, a percentage of 100% of operability is achieved in a set of Smart Classrooms on a Smart Campus.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA Internet das Coisas (do inglês Internet of Things- IoT) tem apresentado o desenvolvimento de aplicações focadas em cidades inteligentes, transporte, saúde e educação com as Smart Classrooms. Diante disso, as crescentes taxas e altas demandas de serviços de tempo real, e como consequência a latência das comunicações tem se tornado uma questão importante. Como a Computação em Nuvem (do inglês Cloud Computing- CC) não apresenta o suporte necessário a esse tipo de serviço, a Computação em Névoa (do inglês Fog Computing- FC) é destacada como meio auxiliador do problema de latência enfrentado. Além disso, a Fog subsidia o emprego de características básicas dos ambientes IoT como o tratamento de mobilidade, disposição da computação distribuída e heterogeneidade de dispositivos. Nesse trabalho, o enfoque é relacionado a IoT na educação especificamente na integração de uma Smart Classroom com a Fog a fim de adquirir maior agilidade nas comunicações e diminuição do uso da largura de banda, sendo este um fator precário em instituições de ensino pública. Com o foco voltado a Fog e o seu funcionamento adequado na Smart Classroom, esse trabalho tem o objetivo de adquirir níveis satisfatórios de operacionalidade. Para obter esse quesito é proposto um modelo de gerenciamento proativo de nodos Fog, chamado de MagProFog o qual é dividido em três módulos, o módulo Database, módulo de Monitoramento (desenvolvido no simulador FogTorch) e o módulo da Interface de Gerenciamento. O gerenciamento tem a finalidade de identificar e prevenir possíveis futuras irregularidades, sua identificação é adquirida pela taxa de sobrecarga da Fog, correlacionada as taxas de uso de armazenamento e de processamento. A prevenção dos problemas causados pela irregularidade da Fog está intrinsecamente correlacionada a obtenção dos possíveis nodos Fogs vizinhos para substituição antes que a irregularidade prejudique o desempenho da Smart Classroom. A definição do nodo Fog que melhor atende o objetivo acima é obtido através de uma análise computacional de desempenho, da carga de uso da Fog e da latência do processo de substituição. Os testes de validação do trabalho são aplicados em um ambiente de simulação (utilizando os três módulos do gerenciamento), onde os dados de comunicação utilizados da Smart Classroom são reais, adquiridos pela prototipação da mesma. Procura-se dessa maneira identificar os níveis de operacionalidade da Smart Classroom adquiridos na aplicação de um conjunto de políticas de solução de irregularidades das Fogs acoplado ao gerenciamento e análise computacional propostos. Os resultados adquiridos são promissores, quando aplicados a um ambiente que demonstre irregularidade, é alcançada, uma porcentagem de 100% de operacionalidade em um conjunto de Smart Classrooms em um Smart Campus.Universidade Federal de Santa MariaBrasilCiência da ComputaçãoUFSMPrograma de Pós-Graduação em Ciência da ComputaçãoCentro de TecnologiaMedina, Roseclea Duartehttp://lattes.cnpq.br/6560346309368052Kantorski, Gustavo ZaniniAmaral, Érico Marcelo Hoff doFischer, Ivania Aline2021-09-27T19:24:14Z2021-09-27T19:24:14Z2020-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/22278ark:/26339/0013000011x9kporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-01-03T14:40:06Zoai:repositorio.ufsm.br:1/22278Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2022-01-03T14:40:06Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
Management proactive based on computational analysis of Fog Nodes that integrate Smart Classroom
title Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
spellingShingle Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
Fischer, Ivania Aline
Gerenciamento da computação em névoa
Computação em névoa
Sala de aula inteligente
Análise computacional nodos da computação em névoa
Redundância de nodos da computação em névoa
MagProFog
Management fog computing
Fog computing
Smart classroom
Computational analysis nodes fog
Fog redundacy
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
title_full Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
title_fullStr Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
title_full_unstemmed Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
title_sort Gerenciamento proativo baseado na análise computacional dos Nodos Fog que integram Smart Classroom
author Fischer, Ivania Aline
author_facet Fischer, Ivania Aline
author_role author
dc.contributor.none.fl_str_mv Medina, Roseclea Duarte
http://lattes.cnpq.br/6560346309368052
Kantorski, Gustavo Zanini
Amaral, Érico Marcelo Hoff do
dc.contributor.author.fl_str_mv Fischer, Ivania Aline
dc.subject.por.fl_str_mv Gerenciamento da computação em névoa
Computação em névoa
Sala de aula inteligente
Análise computacional nodos da computação em névoa
Redundância de nodos da computação em névoa
MagProFog
Management fog computing
Fog computing
Smart classroom
Computational analysis nodes fog
Fog redundacy
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic Gerenciamento da computação em névoa
Computação em névoa
Sala de aula inteligente
Análise computacional nodos da computação em névoa
Redundância de nodos da computação em névoa
MagProFog
Management fog computing
Fog computing
Smart classroom
Computational analysis nodes fog
Fog redundacy
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description The Internet of Things (IoT) has presented the development of applications focused on smart cities, transport, health and education with Smart Classrooms. That said, the increasing rates and high demands for real-time services, and as a consequence, the latency of communications has become an important issue. As Cloud Computing (CC) does not provide the necessary support for this type of service, Computing in Fog (FC) is highlighted as a means of helping the latency problem faced. In addition, Fog subsidizes the use of basic characteristics of IoT environments such as mobility treatment, distributed computing layout and device heterogeneity. In this work, the focus is related to IoT in education specifically in the integration of a Smart Classroom with Fog in order to acquire greater agility in communications and decrease the use of bandwidth, which is a precarious factor in public education institutions. With a focus on Fog and its proper functioning in Smart Classroom, this work has the objective of acquiring satisfactory levels of operationality. To obtain this item a model of proactive management of Fog nodes is proposed, called MagProFog which is divided into three modules, the Database module, Monitoring module (developed in the FogTorch simulator) and the Management Interface module. The management has the purpose of identifying and preventing possible future irregularities, its identification is acquired by Fog is overhead rate, correlated with the storage and processing usage rates. The prevention of problems caused by Fog is irregularity is intrinsically correlated with obtaining possible neighboring Fogs nodes for replacement before the irregularity impairs the performance of the Smart Classroom. The definition of the Fog node that best meets the objective above is obtained through a computational analysis of performance, the use load of Fog and the latency of the replacement process. The work validation tests are applied in a simulation environment (using the three management modules), where the communication data used by Smart Classroom is real acquired by its prototyping. In this way, we seek to identify the operational levels of Smart Classroom acquired in the application of a set of Fogs irregularities resolution policies coupled with the proposed computational management and analysis. The acquired results are promising, when applied to an environment that demonstrates irregularity, a percentage of 100% of operability is achieved in a set of Smart Classrooms on a Smart Campus.
publishDate 2020
dc.date.none.fl_str_mv 2020-03-09
2021-09-27T19:24:14Z
2021-09-27T19:24:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/22278
dc.identifier.dark.fl_str_mv ark:/26339/0013000011x9k
url http://repositorio.ufsm.br/handle/1/22278
identifier_str_mv ark:/26339/0013000011x9k
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Ciência da Computação
UFSM
Programa de Pós-Graduação em Ciência da Computação
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847103620653252608