Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin

Detalhes bibliográficos
Autor(a) principal: Medeiros, Bismarck Bório de
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000010x39
Texto Completo: http://repositorio.ufsm.br/handle/1/25114
Resumo: The work seeks to elucidate and understand relevant aspects in the structure of paradoxical undecidable sentences in consistent formal systems that contain Dedekind-Peano Arithmetic. The first chapter exposes the investigations and advances in Mathematics and Logic associated and the philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem, published in his article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in 1931. We will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century with its main lines of thought, indicating the mathematical elements and instruments developed to solve certain problems, as well as philosophical assumptions and commitments that accompanied the activities aimed at the formalization and foundation of contemporary Mathematical Logic that helped Gödel to elaborate his demonstration and to explain limitations of such formal systems. The second chapter aims to analyze the components and expose or elaborate formalized undecidable sentences based on paradoxes considered epistemic or semantic. Will be discussed paradoxes expressed implicitly and explicitly in the structure of undecidable sentences. We approaching similarities and distinctions of both finite and infinite undecidable sentences, seeking to understand the proofs and phenomena that lead to the incompleteness of formal systems that contains Dedekind- Peano Arithmetic. Soon after, the third chapter will focus on the application of Algorithmic Information Theory developed by Gregory Chaitin to demonstrate a discussed version of incompleteness of formal systems based on Berry's Paradox. The critical literature on this information-theoretic version will be resumed, as well as an analysis based on the sentences seen above, carrying out a scrutiny of the justifications and definitions used in Chaitin's proof. At the end, we open a discussion about the nature of incompleteness associated with the notion of computability and the limits of finite mechanical processes.
id UFSM_d5dbc2b9a5e6fbc960a72addc2f34e9b
oai_identifier_str oai:repositorio.ufsm.br:1/25114
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory ChaitinAspects of Kurt Gödel's first incompleteness theorem and an analysis of Gregory Chaitin's information-theoretic proofComputabilidade efetivaComplexidadeFinitismoFunções recursivasIncompletudeIndecidibilidadeInformação algorítmicaLema diagonalParadoxosAlgorithmic informationComplexityDiagonal lemmaEffective computabilityFinitismIncompletenessParadoxesRecursive functionsUndecidabilityCNPQ::CIENCIAS HUMANAS::FILOSOFIAThe work seeks to elucidate and understand relevant aspects in the structure of paradoxical undecidable sentences in consistent formal systems that contain Dedekind-Peano Arithmetic. The first chapter exposes the investigations and advances in Mathematics and Logic associated and the philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem, published in his article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in 1931. We will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century with its main lines of thought, indicating the mathematical elements and instruments developed to solve certain problems, as well as philosophical assumptions and commitments that accompanied the activities aimed at the formalization and foundation of contemporary Mathematical Logic that helped Gödel to elaborate his demonstration and to explain limitations of such formal systems. The second chapter aims to analyze the components and expose or elaborate formalized undecidable sentences based on paradoxes considered epistemic or semantic. Will be discussed paradoxes expressed implicitly and explicitly in the structure of undecidable sentences. We approaching similarities and distinctions of both finite and infinite undecidable sentences, seeking to understand the proofs and phenomena that lead to the incompleteness of formal systems that contains Dedekind- Peano Arithmetic. Soon after, the third chapter will focus on the application of Algorithmic Information Theory developed by Gregory Chaitin to demonstrate a discussed version of incompleteness of formal systems based on Berry's Paradox. The critical literature on this information-theoretic version will be resumed, as well as an analysis based on the sentences seen above, carrying out a scrutiny of the justifications and definitions used in Chaitin's proof. At the end, we open a discussion about the nature of incompleteness associated with the notion of computability and the limits of finite mechanical processes.O trabalho busca elucidar e compreender aspectos relevantes na estrutura das sentenças indecidíveis paradoxais em sistemas formais consistentes que contenham a Aritmética de Dedekind-Peano. O primeiro capítulo expõe as investigações e avanços na Matemática e na Lógica associadas às concepções filosóficas que culminaram no Primeiro Teorema da Incompletude de Kurt Gödel, publicado em seu artigo Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, em 1931. Para isso, faremos uma abordagem histórica e conceitual da Matemática da segunda metade do século XIX até a primeira metade do século XX com suas linhas de pensamento principais, indicando os elementos e instrumentos matemáticos desenvolvidos para solução de certos problemas, assim como pressupostos e compromissos filosóficos que acompanharam as atividades voltadas à formalização e fundamentação da Lógica Matemática contemporânea que auxiliaram Gödel a elaborar sua demonstração e explicitar as limitações de tais sistemas formais. O segundo capítulo tem como objetivo analisar os componentes e expor ou elaborar sentenças indecidíveis formalizadas baseadas em paradoxos considerados epistêmicos ou semânticos. Serão discutidos paradoxos expressos de forma implícita e explícita na estrutura das sentenças indecidíveis, abordando semelhanças e distinções tanto de sentenças indecidíveis finitárias quanto infinitárias, procurando entender as provas e fenômenos que levam a incompletude de sistemas que contêm a Aritmética de Dedekind-Peano. Logo após, o terceiro capítulo terá foco na aplicação da Teoria Algorítmica da Informação desenvolvida por Gregory Chaitin para demonstrar uma discutida versão da incompletude de sistemas formais baseada no Paradoxo de Berry. Será retomada a literatura crítica a tal versão teorético-informacional, bem como feita uma análise com base nas sentenças vistas anteriormente, realizando-se um escrutínio acerca das justificativas e definições utilizadas na prova de Chaitin. Ao final, abrimos uma discussão acerca da natureza da incompletude associada a incomputabilidade e os limites de processos computáveis finitos.Universidade Federal de Santa MariaBrasilFilosofiaUFSMPrograma de Pós-Graduação em FilosofiaCentro de Ciências Sociais e HumanasSautter, Frank Thomashttp://lattes.cnpq.br/2804652028967760Coniglio, Marcelo EstebanHaeusler, Edward HermannMedeiros, Bismarck Bório de2022-06-27T17:31:17Z2022-06-27T17:31:17Z2022-05-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/25114ark:/26339/0013000010x39porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-07-29T17:33:43Zoai:repositorio.ufsm.br:1/25114Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2022-07-29T17:33:43Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
Aspects of Kurt Gödel's first incompleteness theorem and an analysis of Gregory Chaitin's information-theoretic proof
title Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
spellingShingle Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
Medeiros, Bismarck Bório de
Computabilidade efetiva
Complexidade
Finitismo
Funções recursivas
Incompletude
Indecidibilidade
Informação algorítmica
Lema diagonal
Paradoxos
Algorithmic information
Complexity
Diagonal lemma
Effective computability
Finitism
Incompleteness
Paradoxes
Recursive functions
Undecidability
CNPQ::CIENCIAS HUMANAS::FILOSOFIA
title_short Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
title_full Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
title_fullStr Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
title_full_unstemmed Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
title_sort Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
author Medeiros, Bismarck Bório de
author_facet Medeiros, Bismarck Bório de
author_role author
dc.contributor.none.fl_str_mv Sautter, Frank Thomas
http://lattes.cnpq.br/2804652028967760
Coniglio, Marcelo Esteban
Haeusler, Edward Hermann
dc.contributor.author.fl_str_mv Medeiros, Bismarck Bório de
dc.subject.por.fl_str_mv Computabilidade efetiva
Complexidade
Finitismo
Funções recursivas
Incompletude
Indecidibilidade
Informação algorítmica
Lema diagonal
Paradoxos
Algorithmic information
Complexity
Diagonal lemma
Effective computability
Finitism
Incompleteness
Paradoxes
Recursive functions
Undecidability
CNPQ::CIENCIAS HUMANAS::FILOSOFIA
topic Computabilidade efetiva
Complexidade
Finitismo
Funções recursivas
Incompletude
Indecidibilidade
Informação algorítmica
Lema diagonal
Paradoxos
Algorithmic information
Complexity
Diagonal lemma
Effective computability
Finitism
Incompleteness
Paradoxes
Recursive functions
Undecidability
CNPQ::CIENCIAS HUMANAS::FILOSOFIA
description The work seeks to elucidate and understand relevant aspects in the structure of paradoxical undecidable sentences in consistent formal systems that contain Dedekind-Peano Arithmetic. The first chapter exposes the investigations and advances in Mathematics and Logic associated and the philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem, published in his article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in 1931. We will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century with its main lines of thought, indicating the mathematical elements and instruments developed to solve certain problems, as well as philosophical assumptions and commitments that accompanied the activities aimed at the formalization and foundation of contemporary Mathematical Logic that helped Gödel to elaborate his demonstration and to explain limitations of such formal systems. The second chapter aims to analyze the components and expose or elaborate formalized undecidable sentences based on paradoxes considered epistemic or semantic. Will be discussed paradoxes expressed implicitly and explicitly in the structure of undecidable sentences. We approaching similarities and distinctions of both finite and infinite undecidable sentences, seeking to understand the proofs and phenomena that lead to the incompleteness of formal systems that contains Dedekind- Peano Arithmetic. Soon after, the third chapter will focus on the application of Algorithmic Information Theory developed by Gregory Chaitin to demonstrate a discussed version of incompleteness of formal systems based on Berry's Paradox. The critical literature on this information-theoretic version will be resumed, as well as an analysis based on the sentences seen above, carrying out a scrutiny of the justifications and definitions used in Chaitin's proof. At the end, we open a discussion about the nature of incompleteness associated with the notion of computability and the limits of finite mechanical processes.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-27T17:31:17Z
2022-06-27T17:31:17Z
2022-05-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/25114
dc.identifier.dark.fl_str_mv ark:/26339/0013000010x39
url http://repositorio.ufsm.br/handle/1/25114
identifier_str_mv ark:/26339/0013000010x39
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Filosofia
UFSM
Programa de Pós-Graduação em Filosofia
Centro de Ciências Sociais e Humanas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Filosofia
UFSM
Programa de Pós-Graduação em Filosofia
Centro de Ciências Sociais e Humanas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1838454117694963712