Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000010x39 |
Texto Completo: | http://repositorio.ufsm.br/handle/1/25114 |
Resumo: | The work seeks to elucidate and understand relevant aspects in the structure of paradoxical undecidable sentences in consistent formal systems that contain Dedekind-Peano Arithmetic. The first chapter exposes the investigations and advances in Mathematics and Logic associated and the philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem, published in his article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in 1931. We will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century with its main lines of thought, indicating the mathematical elements and instruments developed to solve certain problems, as well as philosophical assumptions and commitments that accompanied the activities aimed at the formalization and foundation of contemporary Mathematical Logic that helped Gödel to elaborate his demonstration and to explain limitations of such formal systems. The second chapter aims to analyze the components and expose or elaborate formalized undecidable sentences based on paradoxes considered epistemic or semantic. Will be discussed paradoxes expressed implicitly and explicitly in the structure of undecidable sentences. We approaching similarities and distinctions of both finite and infinite undecidable sentences, seeking to understand the proofs and phenomena that lead to the incompleteness of formal systems that contains Dedekind- Peano Arithmetic. Soon after, the third chapter will focus on the application of Algorithmic Information Theory developed by Gregory Chaitin to demonstrate a discussed version of incompleteness of formal systems based on Berry's Paradox. The critical literature on this information-theoretic version will be resumed, as well as an analysis based on the sentences seen above, carrying out a scrutiny of the justifications and definitions used in Chaitin's proof. At the end, we open a discussion about the nature of incompleteness associated with the notion of computability and the limits of finite mechanical processes. |
id |
UFSM_d5dbc2b9a5e6fbc960a72addc2f34e9b |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/25114 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory ChaitinAspects of Kurt Gödel's first incompleteness theorem and an analysis of Gregory Chaitin's information-theoretic proofComputabilidade efetivaComplexidadeFinitismoFunções recursivasIncompletudeIndecidibilidadeInformação algorítmicaLema diagonalParadoxosAlgorithmic informationComplexityDiagonal lemmaEffective computabilityFinitismIncompletenessParadoxesRecursive functionsUndecidabilityCNPQ::CIENCIAS HUMANAS::FILOSOFIAThe work seeks to elucidate and understand relevant aspects in the structure of paradoxical undecidable sentences in consistent formal systems that contain Dedekind-Peano Arithmetic. The first chapter exposes the investigations and advances in Mathematics and Logic associated and the philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem, published in his article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in 1931. We will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century with its main lines of thought, indicating the mathematical elements and instruments developed to solve certain problems, as well as philosophical assumptions and commitments that accompanied the activities aimed at the formalization and foundation of contemporary Mathematical Logic that helped Gödel to elaborate his demonstration and to explain limitations of such formal systems. The second chapter aims to analyze the components and expose or elaborate formalized undecidable sentences based on paradoxes considered epistemic or semantic. Will be discussed paradoxes expressed implicitly and explicitly in the structure of undecidable sentences. We approaching similarities and distinctions of both finite and infinite undecidable sentences, seeking to understand the proofs and phenomena that lead to the incompleteness of formal systems that contains Dedekind- Peano Arithmetic. Soon after, the third chapter will focus on the application of Algorithmic Information Theory developed by Gregory Chaitin to demonstrate a discussed version of incompleteness of formal systems based on Berry's Paradox. The critical literature on this information-theoretic version will be resumed, as well as an analysis based on the sentences seen above, carrying out a scrutiny of the justifications and definitions used in Chaitin's proof. At the end, we open a discussion about the nature of incompleteness associated with the notion of computability and the limits of finite mechanical processes.O trabalho busca elucidar e compreender aspectos relevantes na estrutura das sentenças indecidíveis paradoxais em sistemas formais consistentes que contenham a Aritmética de Dedekind-Peano. O primeiro capítulo expõe as investigações e avanços na Matemática e na Lógica associadas às concepções filosóficas que culminaram no Primeiro Teorema da Incompletude de Kurt Gödel, publicado em seu artigo Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, em 1931. Para isso, faremos uma abordagem histórica e conceitual da Matemática da segunda metade do século XIX até a primeira metade do século XX com suas linhas de pensamento principais, indicando os elementos e instrumentos matemáticos desenvolvidos para solução de certos problemas, assim como pressupostos e compromissos filosóficos que acompanharam as atividades voltadas à formalização e fundamentação da Lógica Matemática contemporânea que auxiliaram Gödel a elaborar sua demonstração e explicitar as limitações de tais sistemas formais. O segundo capítulo tem como objetivo analisar os componentes e expor ou elaborar sentenças indecidíveis formalizadas baseadas em paradoxos considerados epistêmicos ou semânticos. Serão discutidos paradoxos expressos de forma implícita e explícita na estrutura das sentenças indecidíveis, abordando semelhanças e distinções tanto de sentenças indecidíveis finitárias quanto infinitárias, procurando entender as provas e fenômenos que levam a incompletude de sistemas que contêm a Aritmética de Dedekind-Peano. Logo após, o terceiro capítulo terá foco na aplicação da Teoria Algorítmica da Informação desenvolvida por Gregory Chaitin para demonstrar uma discutida versão da incompletude de sistemas formais baseada no Paradoxo de Berry. Será retomada a literatura crítica a tal versão teorético-informacional, bem como feita uma análise com base nas sentenças vistas anteriormente, realizando-se um escrutínio acerca das justificativas e definições utilizadas na prova de Chaitin. Ao final, abrimos uma discussão acerca da natureza da incompletude associada a incomputabilidade e os limites de processos computáveis finitos.Universidade Federal de Santa MariaBrasilFilosofiaUFSMPrograma de Pós-Graduação em FilosofiaCentro de Ciências Sociais e HumanasSautter, Frank Thomashttp://lattes.cnpq.br/2804652028967760Coniglio, Marcelo EstebanHaeusler, Edward HermannMedeiros, Bismarck Bório de2022-06-27T17:31:17Z2022-06-27T17:31:17Z2022-05-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/25114ark:/26339/0013000010x39porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2022-07-29T17:33:43Zoai:repositorio.ufsm.br:1/25114Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2022-07-29T17:33:43Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin Aspects of Kurt Gödel's first incompleteness theorem and an analysis of Gregory Chaitin's information-theoretic proof |
title |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin |
spellingShingle |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin Medeiros, Bismarck Bório de Computabilidade efetiva Complexidade Finitismo Funções recursivas Incompletude Indecidibilidade Informação algorítmica Lema diagonal Paradoxos Algorithmic information Complexity Diagonal lemma Effective computability Finitism Incompleteness Paradoxes Recursive functions Undecidability CNPQ::CIENCIAS HUMANAS::FILOSOFIA |
title_short |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin |
title_full |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin |
title_fullStr |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin |
title_full_unstemmed |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin |
title_sort |
Aspectos do primeiro teorema da incompletude de Kurt Gödel e uma análise da prova teorético informacional de Gregory Chaitin |
author |
Medeiros, Bismarck Bório de |
author_facet |
Medeiros, Bismarck Bório de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Sautter, Frank Thomas http://lattes.cnpq.br/2804652028967760 Coniglio, Marcelo Esteban Haeusler, Edward Hermann |
dc.contributor.author.fl_str_mv |
Medeiros, Bismarck Bório de |
dc.subject.por.fl_str_mv |
Computabilidade efetiva Complexidade Finitismo Funções recursivas Incompletude Indecidibilidade Informação algorítmica Lema diagonal Paradoxos Algorithmic information Complexity Diagonal lemma Effective computability Finitism Incompleteness Paradoxes Recursive functions Undecidability CNPQ::CIENCIAS HUMANAS::FILOSOFIA |
topic |
Computabilidade efetiva Complexidade Finitismo Funções recursivas Incompletude Indecidibilidade Informação algorítmica Lema diagonal Paradoxos Algorithmic information Complexity Diagonal lemma Effective computability Finitism Incompleteness Paradoxes Recursive functions Undecidability CNPQ::CIENCIAS HUMANAS::FILOSOFIA |
description |
The work seeks to elucidate and understand relevant aspects in the structure of paradoxical undecidable sentences in consistent formal systems that contain Dedekind-Peano Arithmetic. The first chapter exposes the investigations and advances in Mathematics and Logic associated and the philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem, published in his article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, in 1931. We will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century with its main lines of thought, indicating the mathematical elements and instruments developed to solve certain problems, as well as philosophical assumptions and commitments that accompanied the activities aimed at the formalization and foundation of contemporary Mathematical Logic that helped Gödel to elaborate his demonstration and to explain limitations of such formal systems. The second chapter aims to analyze the components and expose or elaborate formalized undecidable sentences based on paradoxes considered epistemic or semantic. Will be discussed paradoxes expressed implicitly and explicitly in the structure of undecidable sentences. We approaching similarities and distinctions of both finite and infinite undecidable sentences, seeking to understand the proofs and phenomena that lead to the incompleteness of formal systems that contains Dedekind- Peano Arithmetic. Soon after, the third chapter will focus on the application of Algorithmic Information Theory developed by Gregory Chaitin to demonstrate a discussed version of incompleteness of formal systems based on Berry's Paradox. The critical literature on this information-theoretic version will be resumed, as well as an analysis based on the sentences seen above, carrying out a scrutiny of the justifications and definitions used in Chaitin's proof. At the end, we open a discussion about the nature of incompleteness associated with the notion of computability and the limits of finite mechanical processes. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-06-27T17:31:17Z 2022-06-27T17:31:17Z 2022-05-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/25114 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000010x39 |
url |
http://repositorio.ufsm.br/handle/1/25114 |
identifier_str_mv |
ark:/26339/0013000010x39 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Filosofia UFSM Programa de Pós-Graduação em Filosofia Centro de Ciências Sociais e Humanas |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Filosofia UFSM Programa de Pós-Graduação em Filosofia Centro de Ciências Sociais e Humanas |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
_version_ |
1838454117694963712 |